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Abstract

This paper is concerned about the confluence of two subjects of the numerical solution of time evolution PDEs: numerical
methods that preserve geometric properties of the flow and the use of absorbing boundary conditions to reduce the computation to
a finite domain. This confluence is studied with special attention to the time stability of the resulting full discretization. For this,
the stability regions of the time integrators are revisited. Since geometric methods are not always A-stable, it is necessary a suitable
behavior of the real part of the eigenvalues of the spatially discretized problem to avoid in practice any time instability. A deep
study is carried out for the case of the one dimensional wave equation when it is discretized with finite differences, showing that
this suitable behavior happens. Numerical experiments confirming the previous results are included.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The use of geometric time integrators [14,20] not only leads to better qualitative properties of the numerical so-
lution, but also to a better accuracy when a long time computation is made. There are a lot of numerical integrators
with some of these properties: symplectic integrators for Hamiltonian systems, symmetric integrators for reversible
systems and methods designed to preserve first integrals.

It is quite common that the problem is defined in an unbounded domain when it is desirable to preserve its geometric
properties. In this case, it is also necessary to make the numerical computation in a finite domain with suitable artificial
boundary conditions [4,5,10–13,22]. There are many possibilities to define these conditions at the boundary, but we
are interested in the so called absorbing boundary conditions (ABCs) which are designed to achieve small reflections
inside the computational domain along with other good properties as the local character and easy implementation.

Apparently, a paradox emerges when geometric integration and ABCs are simultaneously considered. On the one
hand, the original problem must be conservative in order to use geometric integrators and, on the other hand, the
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incorporation of ABCs converts the original problem into a strongly dissipative system because of the absorption of
every part of the solution which arrives at the boundary. Then, it could be thought that it is absurd to use geometric
methods in this case. However, the geometric properties of the solution are still relevant inside the computational
domain.

In this situation, the stability of the time integration must be addressed. When the ABCs are incorporated, the
eigenvalues of the discretized differential operator are complex numbers with, in general, non vanishing real part
and with an increasing size when the spatial discretization is refined. Therefore, we can deduce that the stability
analysis which has already been carried out in the literature for the conservative case, where the eigenvalues are
purely imaginary complex numbers (see for example [17]), is not suitable for the case which we are interested in.

We address this question by considering as case study the one dimensional linear wave equation

ut t = uxx , x ∈ R, t ≥ 0. (1)

The application of symplectic methods to the wave equation with absorbing boundary conditions, and the
subsequent near preservation energy is not new, but it was published in [7,18]. In these works the authors studied
the Eq. (1) in the interval [0, L] with the transparent boundary conditions ut (0, t) = ux (0, t), ut (L , t) = −ux (L , t).
This problem is discretized in time and space using the Preissman box scheme.

Our approach is different, since we start considering a spatial discretization of (1). Let h > 0 be a given spatial step,
for real and fixed a, we take the nodes x j = a + jh for j ∈ Z. Using second order finite differences to approximate
the second derivative in space, we have

d2U j

dt2 =
U j+1 − 2U j + U j−1

h2 , j ∈ Z, t ≥ 0, (2)

where U j ≈ u(x j ).
We denote the computational window by [a, b] = [x0, xN ] = [a, a + Nh], where h = (b − a)/N and N ∈ N.

Nonlocal transparent boundary conditions (TBCs), associated to the space discretized wave equation given by (2),
have been obtained in Proposition 3.2 of [16]. In Fourier variables, and for small enough ωh, they are given by

u0(ω) = r1(ωh)u1(ω),uN (ω) = r1(ωh)uN−1(ω),


(3)

at x0 and xN respectively, where
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The ABCs are deduced by approximating the function r1(ωh) by using Taylor or Padé expansions and taking the
inverse Fourier transform in order to deduce the ABCs in the original variables. We will use the notation ABC(p, q)

for the ABCs obtained when we use the Padé expansion given by a rational function p1(ωh)/p2(ωh), where p1 and
p2 are polynomial functions with degrees p and q respectively. In this case, we define the order of absorption as the
number p + q + 1 (this definition corresponds to the one used in [4,5] and it is slightly different from the one used
in [16], where the order of absorption is defined as p + q).

This paper is written considering ABC(2, 2), which have fifth order of absorption. In this way, we obtain an
ordinary differential system which may be written in the form

d2uh

dt2 = Ahuh + Bh
duh

dt
. (5)

Here, Ah and Bh , given in Section 4, are matrices which dimension depends on the parameter h.
The following step is to rewrite (5) as a first order ordinary differential system

d

dt
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, (6)
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