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Abstract

In a recent paper we proposed a numerical method to solve a non-standard non-linear second order integro-differential boundary
value problem. Here, we answer two questions remained open: we state the order of convergence of this method and provide some
sufficient conditions for the uniqueness of the solution both of the discrete and the continuous problem. Finally, we compare the
performances of the method for different choices of the iteration procedure to solve the non-standard nonlinearity.
© 2013 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the non-standard second order integro-differential equation⎧⎪⎨
⎪⎩
ν(y)g(y) −

∫ +∞

0
k(x)g(x)dx[D(y)g′(y)]′ = p(y)

g′(0) = 0, lim
y→+∞ g(y) = 0

, y≥0, (1)

which is a simplified model for a problem of kinetic theory of dusty plasmas (see [4,5,8,9]). Eq. (1) has been investigated
both from a theoretical [1] and a numerical [2] point of view by the same authors, who proposed and analyzed a numerical
method tuned to the non-standard nature of the problem itself. The integro-differential problem (1) is non-standard in
the sense that the coefficients of the differential terms of the unknown function depend on the unknown itself, by means
of an integral over the semi-axis. For this reason, the method proposed in [2] consists of two steps: the discretization
of the differential and integral terms by means of finite difference formulas and quadrature formulas respectively, the
resolution of the resulting non-linear system by means of the bisection iterative process. In the same paper the analysis
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of convergence has been provided, but, while the numerical experiments clearly show a convergence order two, this
remained an open problem from a theoretical point of view. In this paper we address this problem by proving that, under
suitable assumptions, the order of convergence of the method in [2] is in fact two. Furthermore, in [1] the existence of
a solution of (1) was stated, but its uniqueness was only a conjecture confirmed by the numerical experiments carried
out in [2]. Here, we furnish sufficient conditions for the continuous and the discrete problem to have a unique solution
and we show how, in this case, the order convergence extends to numerical methods based on any iterative procedure
applied for solving the nonlinearity of the discrete problem.

In order to describe the numerical method we write down problem (1) as{
ν(y)g(y, q) − q[D(y)g′(y, q)]′ = p(y)

g′(0, q) = 0, lim
y→+∞ g(y, q) = 0 , y≥0, q > 0, (2)

q = f (q), f (q) :=
∫ +∞

0
k(x)g(x, q)dx, (3)

where the parametric problem (2) coincides with (1) when q is a fixed point of the nonlinear function f(q) defined in
(3).

Section 2 contains a synthesis of the investigations carried out in [1,2]; in Section 3, using an idea developed in
[6,7], we analyze the order of convergence of the numerical method and in Section 4 we establish some sufficient
assumptions for the uniqueness of the solution. In Section 5, which is devoted to the numerical experiments, we
illustrate the convergence of the numerical method based on other iterative processes and in Section 6 some concluding
remarks are reported.

2. Background

We denote by BCr[0, + ∞) the space of all continuous and bounded functions on [0, + ∞) having continuous and
bounded derivatives up to order r. Moreover, Cr[0, + ∞) denotes the usual space of continuous and differentiable
functions up to order r. From now on we assume that the following hypotheses on the functions involved in (1) hold

(h1) D ∈ BC3[0, + ∞), ν∈ C2[0, + ∞), k ∈ C3[0, + ∞), p ∈ BC2[0, + ∞),
(h2) 0 < Dinf ≤ D(y) ≤ Dsup, |D′(y)| ≤ D1, y ≥ 0,
(h3) 0 < νinf ≤ ν(y) ≤ νsup, |ν(i)(y)| ≤ νi, i = 1, 2, y ≥ 0,
(h4) 0 ≤ p(y) ≤ P, y ≥ 0,
(h5) lim y→+∞p(y) = 0,
(h6)

∫ +∞
0 p(y)dy < +∞,

(h7) k(y) ≥ 0, y ≥ 0,
(h8)

∫ +∞
0 |k(i)(x)|dx < +∞, i = 0, . . ., 3,

with Dinf, Dsup, D1, νinf, νsup, P positive constants and k(y) and p(y) not identically zero. These assumptions summarize
the ones set in [1,2] where we prove the existence of a solution g(y) of problem (1) and propose a numerical method
to approximate it.

In order to solve numerically problems (2)–(3) we fix the step length h > 0, consider problem (2) on [0, T], with
T = Nh sufficiently large, and a uniform mesh on it:

�h : 0 = y0 < y1 < y2 < . . . < yN−1 < yN = T, yi = ih, i = 0, . . ., N. (4)

The meaning of T sufficiently large is deeply explained in [2] (Sections 3–5), where we also show how to compute it.
Since the solution g(y) of (1) tends to zero as y→ ∞, we are allowed to add the following assumption

(h9) T is large enough to have |g(y, q)| = O(h4), for all y ≥ T.

Let us set

gi = gi(q) ≈ g(yi, q), i = 0, . . ., N − 1, gN = 0, (5)
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