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Abstract

The method investigated in this paper is concerned with the multivariate global optimization with box constraints. A new
quadratic lower bound in a branch and bound framework is proposed. For a continuous, twice differentiable function f , the new
lower bound is given by a difference of the linear interpolant of f and a quadratic concave function. The proposed BB algorithm
using this new lower bound is easy to implement and often provides high quality bounds. The performances of the proposed al-
gorithm are compared with those of two others branch and bound algorithms, the first uses a linear lower bound and the second a
quadratic lower bound. Computational results conducted on several test problems show the efficiency of the proposed algorithm.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

We consider the following problem

(P)


α := min f (x)

x ∈ B

where B is a box in Rn and f : O ⊂ Rn
→ R is twice continuously differentiable on an open convex set O containing

B. Although the constraints are simple, the problem is still very hard in view of the need to find a global solution.
Several methods in the literature have been investigated for solving this problem. They can be divided into two ap-
proaches: heuristic and deterministic approaches [11,15,16]. The most popular deterministic approaches are interval
analysis [13,14], and exact algorithms as the adaptation of branch and bound proposed in [4].

Deterministic branch and bound methods for the solution of general nonlinear programs have become increasingly
popular during the last decade or two, with increasing computer speed, algorithmic improvements, and multiproces-
sors. These methods are mostly based on the construction of a convex underestimating problem which allows the
generation of two converging sequences of upper and lower bounds.
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The computation of a good convex lower bound function is very important in global optimization, since the tight-
ness of the lower bound of nonconvex functions has a strong influence on the amount of computation. Constant and
affine lower bound functions are extensively used in global optimization because of their simplicity and ease of com-
putation [12,23]. In [1,4], the authors developed the αBB algorithm that uses a convex relaxation strategy to determine
rigorous lower bounds on the global minimum solution. The algorithm implements a branch and bound strategy that
utilizes convex NLPs for bounding. Convex envelopes and tight convexifications are obtained for specially structured
nonconvex terms, and α-convex underestimations for twice continuously differentiable functions. The latter are de-
termined by adding a non-positive convex function to the original nonconvex function such that the Hessian of the
sum is guaranteed to be positive semi-definite [2]. In [20], a new spline is introduced to refine the convex underes-
timation approach used in the αBB. In [9], the authors introduced a new method for computing tight affine lower
bound functions for a polynomial in Bézier form, by using a linear least squares approximation of the control points.
Unfortunately, this method needs the translation of the polynomial from the power to the Bernstein basis. In [21], the
authors compute the range of values of real functions using B-splines form. A survey of recent advances in global
optimization may be found in [8]. In [18], the authors exploit the structure of f and the fact that a non convex function
can be described by the difference of convex functions. The DC (difference of convex functions) programming and
related DCA algorithms have been applied successfully to global optimization of non convex functions. In [19], the
authors proposed a branch and bound DC algorithm combined with an ellipsoid technique, for solving box constrained
non convex quadratic problems. In [17], the authors proposed an efficient algorithm for the univariate case, based on
branch and bound techniques and a quadratic lower underestimation. It was shown in that work that the quadratic
lower underestimation is easy to build and gives much improvement than the widely used linear underestimation. Mo-
tivated by these benefits, in this work we extend the algorithm to the multivariate case. The organization of this paper
is as follows. In Section 2, we present the main results of the paper concerning the lower bounding procedure. The
case of quadratic programming is discussed in Section 3. The algorithm and its convergence are studied in Section 4,
while numerical results are reported in Section 5. The conclusions of the work are given in Section 6.

2. Main results

Let S := [p, q] be a bounded closed interval in R. Let f be a continuously twice differentiable function S, such
that | f ′′(x)| ≤ K for all x in [p, q]. Let x0 and x1 be two real numbers in [p, q] such that x0

≤ x1. Let w0 and w1 be
real valued functions defined by

w0(x) =
x1
− x

x1 − x0 if x0
≤ x ≤ x1, w1(x) =

x − x0

x1 − x0 if x0
≤ x ≤ x1. (1)

Clearly, w0 and w1 are positives and verifies the partition of unity properties: for all x in the interval [x0, x1
], we have

w0(x)+ w1(x) = 1. We have also wi (x j ) is equal to 0 if i ≠ j , and 1 otherwise.
Let h = x1

− x0 and Lh f be the piecewise linear interpolant to f at points x0, x1 [5,7]

Lh f (x) =

1
i=0

f (xi ) wi (x) . (2)

In [17], the authors proposed a quadratic underestimation L B( f ) of f on the interval [x0, x1
] as a difference of a

piecewise linear interpolant and a concave quadratic perturbation. It is given by

L B(x) = Lh f (x)−
1
2

K


x − x0
 

x1
− x


, h = x1

− x0 (3)

where K is a positive number such that
 f ′′(x)

 ≤ K , for all x in the interval [p, q]. We can generalize the result in
Eq. (3), to multivariate global optimization problem (P). In this case, problem (P) can be written in the form

(P)


min f (x1, . . . , xn)

(x1, . . . , xn) ∈ B.

Let B be the box Π n
i=1


x0

i , x1
i


and V (B) the set of vertices of B. An element in V (B) is denoted as (x i1

1 , . . . , x in
n )

with ik = 0 or 1, for k = 1, . . . , n. Let hi = x1
i − x0

i , the piecewise linear interpolant of f at x0, x1, . . . , xn is
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