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Abstract

A class of goodness-of-fit tests is considered. The test statistic of each test in this class is an L2-norm of the difference between the
empirical characteristic function associated with a random sample and an estimator of the characteristic function of the population in
the null hypothesis. Because it is not always possible to give an easily computable analytic expression of the test statistic, a numerical
integration formula is given to approximate it. The approximation is built by considering a piecewise quadratic Taylor expansion.
The null distribution of the resultant test statistic is consistently estimated by means of a bootstrap estimator. A simulation study is
carried out to illustrate the accuracy of the numerical approximation, the goodness of the bootstrap estimator of the null distribution
and the power of the test. Applications to real data sets are also provided.
© 2013 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

Most statistical methods assume certain distributional hypothesis on the random mechanism generating the data.
In common cases, the conclusions of the analysis are rather sensitive to these distributional assumptions. So a crucial
aspect of any data analysis is to check if the data support such distributional assumptions, that is to say, testing goodness-
of-fit (gof). Since the characteristic function (cf) characterizes a probability law, there is an increasing number of gof
tests whose test statistic measures deviations between the empirical characteristic function (ecf) and the cf in the
null hypothesis. Examples are the tests in Epps and Pulley [7] for testing goodness-of-fit to the univariate normal
distribution, in Baringhaus and Henze [5] for testing goodness-of-fit to the multivariate normal distribution, in Gürtler
and Henze [8] and Matsui and Takemura [10] for the Cauchy distribution, in Meintanis [12] for the logistic distribution,
in Matsui and Takemura [11] for the stable symmetric distributions, among many others. All the cited tests belong to
a class of tests, that has been studied in Jiménez-Gamero et al. [9]. Next we describe such class.

Let X1, X2, . . ., Xn be independent and identically distributed (iid) random d-dimensional vectors with common
distribution function (df) F, for some fixed integer d ≥  1. To test the composite null hypothesis,

H0 : the law of X1 ∈  F,
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where F is a parametric family, F =  {F (x; θ),  x  ∈  R
d,  θ  ∈ �},  �  ⊆  R

p, we consider the following test function

�  =
{

1 if Dn,w(θ̂)≥dn,w,α,

0,  otherwise,
(1)

where dn,w,α is the 1 −  α  percentile of the null distribution of the test statistic Dn,w(θ̂),

Dn,w(θ̂) =
∫

|cn(t) −  c0(t; θ̂)|2w(t) dt, (2)

cn(t) is the ecf,

cn(t) = 1

n

n∑
j=1

exp(it′Xj),

c0(t  ; θ) = R0(t, θ) + iI0(t, θ) is the cf of F (x; θ), θ̂ is a consistent estimator of θ, w(t) is a density function on R
d , which

may depend on θ  or not, for any complex number z, z = a  + ib  with i = √−1 and a,  b  ∈  R,  |z|2 =  a2 +  b2, and, from
now on, an unspecified integral denotes integration over the whole space R

d . The presence of w(t) in the expression
of Dn,w(θ̂) renders the integral in (2) finite and it also gives a readily computable closed form to Dn,w(θ̂) for suitable
choices of w. Specifically, (see Lemma 1 in [9])

Dn,w(θ̂) = 1

n2

n∑
j=1

n∑
k=1

h(Xj, Xk; θ̂),

where

h(x,  y; θ) =  u(x  −  y) −  u0(x; θ) −  u0(y; θ) +  u00(θ),

u0(x; θ) =
∫

u(x −  y) dF (y; θ),  u00(θ) =
∫

u(x −  y) dF (x; θ) dF (y; θ),
(3)

and u(t) is the real part of the cf of a random vector with density function w, that is, u(t) = ∫ cos(x′t)w(x) dx. Two
problems arise with the test function �  defined in (1). The first one is the calculation of the critical point dn,w,α,
because the exact null distribution of the test statistic Dn,w(θ̂) is unknown. A classical way to overcome this problem
is by approximating the null distribution of the test statistic by means of its asymptotic null distribution. When H0 is
true, Dn,w(θ̂) converges in law to a linear combination of independent χ2

1 variates, where the weights in this linear
combination depend in a very complicated way on the unknown true value of the parameter θ, and thus they are
unknown. Therefore, the asymptotic null distribution of Dn,w(θ̂) does not provide a useful approximation. Fortunately,
the critical point dn,w,α can be consistently approximated by a parametric bootstrap.

The second and perhaps the only serious problem with the test (1) is the calculation of the test statistic Dn,w(θ̂)
itself, because for some parametric families the quantities u0 and u00 in (3) may not have a closed or simple expression.
The aim of this paper is to try to solve this drawback by using a numerical integration formula to approximate Dn,w(θ̂).
To apply it we will assume that the integral in the expression of Dn,w(θ̂) is not over the whole space R

d , but over a
hypercube I  =  [a1,  b1] ×  [a2,  b2] ×  ...  ×  [ad,  bd],  ai, bi ∈ R,  ai <  bi, 1 ≤  i ≤ d.

Note that this assumption is not a very severe restriction since we can always do a change of variable in such a way
that the new variables range in a hypercube. Even if we do not do the change of variable, the assumption is still not very

restrictive because as |cn(t) −  c0(t; θ̂)|2 ≤  4 and w(t) is a density function on R
d , for every ε  > 0 there exist a rectangle

I = I(ε) such that
∫
I
w(t) dt≥1 −  ε/4 and thus | ∫ |cn(t) −  c0(t; θ̂)|2w(t) dt  − ∫

I
|cn(t) −  c0(t; θ̂)|2w(t) dt| ≤  ε.

The asymptotic null distribution of the resultant test statistic is again a linear combination of independent χ2
1 variates,

with the weights depending on the true value of θ, and hence the asymptotic null distribution does not yield a useful
approximation to the null distribution of the test statistic. It will be shown that the bootstrap gives a consistent estimator
of the null distribution.

The paper is organized as follows. In Section 2 a numerical integration formula to approximate Dn,w(θ̂) is given.
The asymptotic null distribution of the resultant test statistic is derived in Section 3. A consistent bootstrap distribution
estimator of the null distribution of the test statistic is studied in Section 4. The consistency against fixed alternatives of
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