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Abstract

We propose a finite element approximation for an evolution model describing the spatial population distribution of two salt tolerant
plant species, such as mangroves, which are affected by inter- and intra-specific competition (Lotka—Volterra), population pressure
(cross-diffusion) and environmental heterogeneity (environmental potential). The environmental potential and the Lotka—Volterra
terms are assumed to depend on the salt concentration in the roots region, which may change as a result of mangroves ability for
uptaking fresh water and leave the salt of the solution behind, in the saturated porous medium. Consequently, partial differential
equations modeling the population dynamics on the surface are coupled with Darcy-transport equations modeling the salt and
pressure—velocity distribution in the subsurface. We provide a numerical discretization based on a stabilized mixed finite element
method for the transport-Darcy flow problem coupled to a finite element method for a regularized version of the cross-diffusion
population model, which we use to numerically demonstrate the behavior of the system.
© 2013 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We present a model for analyzing the spatial distribution evolution of two plant populations which are affected by

e competition for similar resources,
e population pressure, and
e environmental quality.

These conditionings are realized mathematically in the form of a time evolution drift-cross diffusion system of
partial differential equations for the biomass densities, u;(x, #)>0, of species i =1 and i =2, introduced by Shigesada
etal. [22]:

dui — divJ; = Fi(-,ur,u2), Ji = Viciu; + azu? + agjuiu ;) + diu; Vo, (D
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Roots region, €4

Fig. 1. Global domain for Problem P. On the surface, population dynamics takes place. In the subsurface, concentration-Darcy equations govern
the unstable salt-water configuration. The link between both regions is, mainly, through the environmental potential, ®.

where i # j, holding in S7=I"p x (0, T), with X € I'p C RN-1 N=2 or 3, open, bounded and with Lipschitz con-
tinuous boundary, 31 p, and for ¢ € (0, T) the time, for an arbitrarily fixed 7> 0. The spatial domain I"p represents the
soil surface and is given as the top boundary of an N-dimensional bounded set, §2, the subsurface domain.

The diffusion coefficients ¢; and a;; are non-negative constants, and d; € R (i, j=1, 2). The source terms are of
competitive Lotka—Volterra type

Fi(fv t?“lvuz) = (Oli(f, t) _ﬂil(fa I)Ml _lgiz(fv t)uz)ul" l = 1’27 (2)

where o; > 0 is the intrinsic growth rate of the i-specie, 8;; > 0 are the coefficients of intra-specific competition, 817,
B>1 > 0 are those of inter-specific competition. Function @ = @(X, 1) is the environmental potential, modeling areas
where the environmental conditions are more or less favorable [22,20]. We shall describe later how the Lotka—Volterra
terms and the environmental potential are related to the evolving environment. The above system of equations is
completed with non-flux boundary conditions and initial data:

Ji-v=0 on dlp x(0,7), 3)
ui(-,0)=u?>0 on I'p, )

for i=1, 2, where v denotes the exterior unit normal to I"p. We shall refer to problem (1)—(4) as to Problem Pg, the
surface problem.

This population model has received much attention since its introduction due to the interesting spatial pattern
formation that its solutions may exhibit, referred to as segregation. Numerical experiments for the evolution problem,
see [10,11,5,14], as well as analytical results on the corresponding steady state problem (with d; =0), see [17,18], seem
to indicate that while the intensity of diffusion (c¢;) and self-diffusion (a;;) tend to suppress pattern formation, those
of cross-diffusion (aj2, az1) seem to help create segregation patterns. We refer to [26,10,11,8,5,14] and the references
therein for analytical results on the existence of solutions and numerical approximations of the problem.

General competitive strategies of populations may include modifying the local environment. A good example is
mangrove ecosystems [16], which are tropical communities of tree species typically growing in saline coastal soils.
Mangroves are salt tolerant species which are able to exclude most of the salt from the sea-water their roots extract from
the saturated soil [4]. In this way, they further salinize poorly flushed soils resulting in an increase of their comparative
fitness to such areas. As pointed out by Passioura et al. [21], differences between species in strategies of water use
may affect the spatial distribution of these species: species with high transpiration rates' may dominate less saline
well-flushed habitats while those adapted to low transpiration rates may occupy more saline poorly flushed intertidal
areas (Fig. 1).

Passioura et al. [21] provided an analytical approach to the mechanisms of soil salinization produced by mangroves
and investigated the consequences of salt concentration increase on mangroves transpiration rate. Their work was later
generalized and extended in a series of papers [24,12,25] from where we recall the following mathematical model. We
assume the subsurface region, 2 C RY to be an open and bounded set that, after the introduction of dimensionless
variables, see [25], takes the form £2=1"p x (0, 1). We denote a point in £2 by x = (¥, z), being z the depth. The

! Transpiration rate is the rate of loss of water vapor from plants surface, taking place mainly from leaves. The amount of water given off depends
upon how much water the roots of the plant may absorb.
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