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Abstract

This article presents two regularization techniques for systems of state-dependent neutral delay differential equations which have
a discontinuity in the derivative of the solution at the initial point. Such problems have a rich dynamics and besides classical solutions
can have weak solutions in the sense of Utkin. Both of the presented techniques permit the numerical solution of such problems
with the code RADAR5, which is designed to compute classical solutions of stiff and differential-algebraic (state-dependent) delay
equations.
© 2011 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

Phenomena with memory often lead to delay differential equations, and when the derivative at a time instant also
depends on the derivative in the past we are concerned with neutral delay equations. In this article we are interested in
systems of state-dependent neutral delay equations of the form

ẏ(t) =  f  (y(t),  ẏ(α(y(t)))) for t  >  0

y(t) =  ϕ(t) for t  ≤  0
(1)

with smooth vector functions f(y, z), ϕ(t) and scalar deviating argument α(y) satisfying α(y(t)) < t  (non-vanishing delay).
More general equations (e.g., dependence of f on time t and on y(α(y(t)))) could be treated as well without presenting
additional difficulties. In the present article we focus on the situation, where the derivative of the solution has a jump
discontinuity at the starting point, i.e.,

ϕ̇(0) /=  f  (ϕ(0), ϕ̇(α(ϕ(0)))).  (2)

Such a system has the following particularities:
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• since it is of neutral type, this discontinuity is in general propagated to further breaking points;
• since the deviating argument is state-dependent, it may occur that at breaking points a classical solution ceases to

exist.

Let us discuss the second item in some more detail. At the first breaking point t0, where we have α(y(t0)) = 0 and
α(y(t)) < 0 for t < t0, the left-hand derivative of α(y(t)) is generically positive, i.e., α′(y(t0))f  (y(t0),  ẏ(0−)) >  0, and
we expect that the solution enters the region α(y) > 0. However, if the right-hand derivative of α(y(t)) is negative, i.e.,
α′(y(t0))f  (y(t0), ẏ(0+)) <  0, it cannot enter this region, and a classical solution ceases to exist.

Such a situation is closely related to ordinary differential equations having a discontinuous vector field. In this
situation it is possible to consider weak solutions (in the sense of Filippov [3] and/or Utkin [13]), where one looks for
solutions staying in the manifold α(y) = 0 (sliding mode) and one permits the derivative ẏ(0) to be multi-valued.

To our knowledge, codes for delay equations cannot handle such a situation in an efficient way. Typically, the code
will stop the integration at such a breaking point with the message that too small step sizes are needed. The aim of the
present article is to discuss regularizations of the neutral delay equations (1), which permit the use of standard software
packages for an efficient computation of classical and weak solutions.

In the present article we study two regularization techniques for the problem (1). The first one (Section 2.1) consists
in changing the derivative of the initial function ϕ(t) on the interval (−  ε, 0] in such a way that the discontinuity of
ẏ(t) is suppressed at the origin. The second one (Section 2.2) is based on turning the problem into the ε  →  0 limit of
a singularly perturbed delay equation (as proposed in [7]). We shall show in Sections 3 and 4 that the solutions of the
regularized problems (which are classical solutions) remain close to a solution of (1) independent of whether it is a
classical or a weak one. Numerical experiments (Section 5) demonstrate the applicability of the code RADAR5 to the
regularized problems, and they confirm the theoretical results of this paper.

2.  Regularization  techniques

The functions f(y, z), α(y), and ϕ(t) of the system (1) are assumed to be sufficiently differentiable. The discontinuity
of the solution is generated by the fact that the derivative ϕ̇(0) does not match the right-hand side of the delay equation
at t  = 0. We consider two approaches (Sections 2.1 and 2.2) of regularizing this discontinuity. Other regularizations
have been considered in [4], where the right-hand side is replaced by its average on a small interval, and in [1], where
the problem is regularized by its numerical discretization based on the Euler method (an idea also used for other classes
of differential equations as discussed in [2]).

The analysis of singularly perturbed state-dependent delay equations is an interesting subject in itself and has
received the attention of many researchers in recent years (see e.g. [11]) both from the theoretical and the numerical
point of view.

2.1.  Regularization  of  the  initial  function

By introducing a new variable for the derivative, a neutral delay equation can be transformed into a differential-
algebraic delay equation. In our situation Eq. (1) becomes

ẏ(t) =  z(t)

0 =  f  (y(t),  z(α(y(t)))) −  z(t),
(3)

where y(t) = ϕ(t) and z(t) = ϕ̇(t) for t ≤  0. This permits us to treat the functions y(t) and z(t) independently of each other.
We do not touch the condition y(t) = ϕ(t) for t ≤  0, but we replace the condition z(t) = ϕ̇(t) on the interval −ε  ≤  t ≤  0
by

z(t) = ϕ̇(−ε) +  χ
( t

ε

)
(ẏ+

0 − ϕ̇(−ε)),  ẏ+
0 =  f (ϕ(0), ϕ̇(α(ϕ(0)))),  (4)

where χ : R  →  R  is a sufficiently differentiable function satisfying χ(−  1) = 0, χ(0) = 1, and χ′(τ) > 0 for τ ∈ [0, 1],
e.g., the linear interpolation polynomial χ(τ) = τ + 1. In this way, the function z(t) is continuous at t  = 0 and the problem
will have a (classical) solution, where the original problem did not. Consequently, codes for differential-algebraic
(index 1), state-dependent delay equations can be applied to solve the problem.
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