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Abstract

In this paper, we apply the methods of B-equivalence and ψ-substitution to prove the existence of discontinuous limit cycle for
the Van der Pol equation with impacts on surfaces. The result is extended through the center manifold theory for coupled oscillators.
The main novelty of the result is that the surfaces, where the jumps occur, are not flat. Examples and simulations are provided to
demonstrate the theoretical results as well as application opportunities.
© 2013 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction  and  preliminaries

Getting bifurcation in dynamics with impacts relies mainly on collisions near the impact point(s). That is why
they are called corner-collision, border-collision, crossing-sliding, grazing-sliding, switching-sliding, etc., bifurcations
[9,12,13,15,17,22,23,30]. That is, the bifurcations are located geometrically. In our present result, we do not have
the geometrical source of bifurcation. It is rather reasoned by specifically arranged interaction of continuous and
discontinuous stages of the process. To be precise, we use a generalized eigenvalue to evaluate which we apply a
characteristic of the impact as well as of the continuous process between moments of discontinuity. This approach
when continuous and discontinuous stages are equally participated in creating a certain phenomena is common for the
theory of differential equations with impulses [3,34]. Our results are, rather, close to those, which obtained for systems
where continuous flows and surfaces of discontinuity are transversal [2,3,5,14,24].

The main instruments in our paper, except for the Hopf bifurcation technique, are the methods of B-equivalence and
ψ-substitution developed in our papers [1–4,6] for discontinuous limit cycles, and one has to emphasize that the set of
all periodic solutions of the non-perturbed system is a proper subset of all solutions near the origin. By a discontinuous
cycle, we mean a trajectory of a discontinuous periodic solution.

The Van der Pol equation arises in the study of circuits containing vacuum tubes and is given by

y′′ +  ε(1 −  y2)y′ +  y =  0 (1)
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where ε  is a real parameter. If ε  = 0, the equation reduces to the equation of simple harmonic motion y′′ + y  = 0 . The
term ε(1 −  y2)y′ in (1) is usually regarded as the friction or resistance. If the coefficient ε(1 −  y2) is positive, then
we have the case of “positive resistance”, and when the coefficient ε(1 −  y2) is negative then we have the case of
“negative resistance”. This equation, introduced by Lord Rayleigh (1896), was studied by Van der Pol (1927) [36] both
theoretically and experimentally using electric circuits.

Hopf bifurcation is an attractive subject of analysis for mathematicians as well as for mechanics and engineers
[2,5,8,11,13–15,22,25,26,28,31,35,36]. Many papers and books have been published about mechanical and electrical
systems with impacts [7,9,12,17,20,27,30,37].

We consider the model with impulses on surfaces which are places in the phase space and are essentially nonlinear
while it is known that the Hopf bifurcation is considered either with linear surfaces of discontinuity or with fixed
moments of impulses [7–10,13,15,17,18,22,33]. We have developed a special effective approach to analyze the problem
in depth which consists of the method of reduction of equations with variable moments of impacts to systems with
fixed moments of impacts [3], a class of equations on variable time scales [2,6], a transformation of equations on time
scales to systems with impulses [4]. This is all the theoretical basis of the present results.

Specifically, we consider the following system:

y′′ +  2αy′ +  (α2 +  β2)y  =  F (y,  y′,  μ),  (y,  y′) /∈  �(μ),

�y′|(y,y′)∈�(μ) =  cy  +  dy′ +  J(y,  y′, μ),
(2)

where α, β /=  0, c, d  are real constants with c = αd, F  and J are analytic functions in all variables. �(μ) is the set of
discontinuity whose equation is given by m1y  + m2y′ + τ(y, y′, μ) = 0, y > 0, for some real numbers m1, m2, and the
function τ(y, y′, μ) stands for a small perturbation, �y′|(y,y′)∈�(μ) =  y′(θ+) −  y′(θ) denotes the jump operator in which
θ is the time when the solution (y, y′) meets the discontinuity set �(μ), that is, θ is such that m1y(θ) + m2y′(θ) + τ(y(θ),
y′(θ), μ) = 0, and y′(θ+) is the right limit of y′(t) at t  = θ . After the impact, the phase point (y(θ+), y′(θ+)) will belong
to the set �′(μ) =  {(u,  v) ∈  R2 : u  =  y,  v  =  cy  +  (1 +  d)y′ +  J(y,  y′,  μ),  (y,  y′) ∈  �(μ)}.  Here y(θ+) is the right limit
of y(t) at t  = θ  . One can easily see that nonlinearity is inserted into all parts of the model including the surface of
discontinuity.

If we choose α  = ε/2, β  = √
1 −  α2 and F(y, y′, μ) = εy2y′ in the differential equation of the system (2), then the Van

der Pol  equation  will be obtained. Therefore, (1) is a special case of (2), if the impulsive condition is not considered.
Note that if F(y, y′, μ) = ε2y2y′ for some nonzero constant ε2, we still have (1) after using the linear transformation
y = √

ε/ε2z  of the dependent variable.
To explain our application motivations, we consider the oscillator which is subdued to the impacts modeled by the

Newton’s law of restitution as a concrete mechanical problem. Consider the system

y′′ +  ε1y
′ +  y =  ε2y

2y′,  (y,  y′) /∈  �,

�y′|(y,y′)∈� =  dy′,
(3)

where ε1, ε2 are constants, d  =  e2πε1(4−ε2
1)−1/2 −  1, �  is the half line y = 0, y′ > 0 . As mentioned above, the last system

is a generalization of the Van der Pol equation with impacts of Newton’s type. If one takes (3) with ε2 = 0, then the
system is

y′′ +  ε1y
′ +  y =  0,  (y,  y′) /∈  �,

�y′|(y,y′)∈� =  dy′.
(4)

Note that the general solution of the differential equation without impulse condition in (4) is given by

y(t) =  e−ε1t/2

(
C1 cos

(
(4 −  ε2

1)1/2t

2

)
+ C2 sin((4 −  ε2

1)1/2t/2)

)
, (5)

where C1 and C2 are arbitrary real constants. Let (0,  y′
0) be any point on the line �′ = �. That is, assume that y′

0 >  0.
Then y(0) = 0, y′(0) =  y′

0 in (5) gives us C1 = 0, C2 =  2y′
0(4 −  ε2

1)−1/2. Thus, we obtain

y(t) =  2y′
0(4 −  ε2

1)−1/2e−ε1t/2 sin((4 −  ε2
1)1/2t/2).
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