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Abstract

The contribution deals with timestepping schemes for nonsmooth dynamical systems. Traditionally, these schemes are locally
of integration order one, both in non-impulsive and impulsive periods. This is inefficient for applications with infinitely many
events but large non-impulsive phases like circuit breakers, valve trains or slider-crank mechanisms. To improve the behaviour
during non-impulsive episodes, we start activities twofold. First, we include the classic schemes in time discontinuous Galerkin
methods. Second, we split non-impulsive and impulsive force propagation. The correct mathematical setting is established with
mollifier functions, Clenshaw–Curtis quadrature rules and an appropriate impact representation. The result is a Petrov–Galerkin
distributional differential inclusion. It defines two Runge–Kutta collocation families and enables higher integration order during
non-impulsive transition phases. As the framework contains the classic Moreau–Jean timestepping schemes for constant ansatz and
test functions on velocity level, it can be considered as a consistent enhancement. An experimental convergence analysis with the
bouncing ball example illustrates the capabilities.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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Notation

The following notation is used throughout the paper. Let I  denote a real time interval. A function f : I →  R
n is

said to be of class Cp(I; R
n) if it is continuously differentiable up to the order p. The set of functions f  : I →  R

n that
are absolutely continuous on I  is denoted by W1,1(I; R

n). The set of functions f : I →  R
n that are locally Lebesgue

integrable on I  is referred to as L1
loc(I; R

n). The set of functions f  : I →  R
n of bounded variations (BV) is represented

by BV(I; R
n). For f  ∈  BV(I; R

n), the right-limit function is given by f+(t) =  lim
s→t,s>tf (s), and respectively the left-

limit function by f−(t) =  lim
s→t,s<tf  (s). The jump of f  at t is symbolized by [[f(t)]] = f+(t) −  f−(t). The set of functions

f : I  →  R
n of locally bounded variations (LBV) is expressed as LBV(I; R

n). In all cases, we skip the image space if
there is no ambiguity and we extend the domain if necessary.
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The set of measures on the interval I  is represented by M(I). We associate with any function f ∈  LBV(I) a
differential measure df  ∈  M(I) [18]. The notation dt  defines the Lebesgue measure on R. The space of all real-
valued, C∞-functions with compact support in I is denoted by D(I). The set of linear functionals that maps D(I) onto
the set of real numbers defines the dual space D∗(I), which is called the space of distributions. For a distribution
d ∈  D∗(I), it is conventional to write

d  : D(I) →  R,  ϕ �→  〈d,  ϕ〉  (1)

where 〈  · , · 〉 is the primal-dual pairing and 〈d, ·  〉  is the linear functional which defines d. For f ∈ L1
loc(I; R

n)
(respectively a measure μ  ∈ M(I)), a corresponding distribution Tf (respectively Tμ) is associated such that

〈Tf ,  ϕ〉  =
∫
I

fϕdt

(
respectively 〈Tμ,  ϕ〉  =

∫
I

ϕμ

)
.  (2)

One abuses notation by identifying Tf with f, i.e. 〈f, ϕ〉  = 〈Tf, ϕ〉  (respectively Tμ with μ, 〈μ, ϕ〉  = 〈Tμ, ϕ〉). The
distributional derivative of a distribution d will be symbolized by Dd  and is usually defined by

〈Dd,  ϕ〉  :=  −〈d, ϕ̇〉, ∀ϕ  ∈  D(I).  (3)

We denote by 0 = : t0 < t1 < · ·  · < tk < · · · < tN : = T  a finite partition (or a subdivision) of the time interval [0, T] (T  > 0).
The integer N  stands for the number of time intervals in the subdivision. The N  sub-intervals Ii : = (ti−1, ti) are of length
�ti and define the time-steps. The time step-size partition is referred to as I :=  {I1,  . .  . ,  IN}. The set of piecewise
continuously differentiable functions on this subdivision is given by Cp(I; R

n). The value of a real function x(t) at the
time tk is approximated by xk.

1.  Point  of  departure

This article treats higher order timestepping schemes based on time discontinuous Galerkin methods in the context
of nonsmooth dynamics. We give a short introduction of nonsmooth dynamical systems in mechanics, of classical time
integration schemes and of present strategies to achieve higher integration order during non-impulsive episodes.

1.1.  Nonsmooth  dynamical  systems

The bouncing  ball  (cf. Fig. 1) is a typical nonsmooth  dynamical  system  in the field of mechanics [29,10,6,24,16,2,26].
Informally, we can envisage the physical evolution as follows. During a finite time interval ∅ /=  I  :=  (0,  T  ) ⊂  R, a
ball with mass m  falls from an initial position q0, given an initial velocity v0 and some external momentum  flow  fdt. It
hits the ground and lifts off again or stays calm depending on the resulting interaction di  being partly elastic or plastic.
If the impact events accumulate in finite-time, the first case is called a Zeno  phenomenon  if bouncing and free flight
alternate infinitely often in I.

fdt
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m
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Fig. 1. Bouncing ball example.
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