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Abstract

We discuss the numerical solution of differential equations of fractional order with discontinuous right-hand side. Problems of
this kind arise, for instance, in sliding mode control. After applying a set-valued regularization, the behavior of some generalizations
of the implicit Euler method is investigated. We show that the scheme in the family of fractional Adams methods possesses the
same chattering-free property of the implicit Euler method in the integer case. A test problem is considered to discuss in details
some implementation issues and numerical experiments are presented.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

The term fractional calculus refers to the generalization of integration and differentiation to any arbitrary (i.e., non
necessarily integer) order. This idea is by no means new and was pioneered by Leibniz who mentioned the possibility
of derivatives of order 1/2 in a correspondence exchanged with L’Hospital in 1695; successively, fractional calculus
stimulated many famous mathematicians, including Euler, Fourier, Lagrange, Laplace, Riemann and some others.

Despite this long history, relevant applications of fractional calculus have emerged only a few decades ago; nonethe-
less, models of fractional order are nowadays commonly used in several areas, ranging from chemistry and physics to
biology, engineering, finance and so on. See [34] for an historical survey of fractional calculus.

In control theory it has been observed that the introduction of controllers involving integration or derivation of
non-integer order allows to achieve higher performance with respect to classical systems of integer order; we refer the
reader to one of the recent monographes [6,33,35,37] on fractional systems.

Sliding mode control (SMC) is a special class of variable-structure systems; it is designed to alter the dynamics of
the system which is firstly driven toward a switching surface and hence is constrained to stay on it. The success and
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widespread use of SMC is mainly due to its simplicity and robustness against parameter variations and disturbances
[42].

Very recently the investigation of the effects of SMC techniques on fractional systems has been approached (e.g., see
[4,18,36,39,38]). Since in SMC the control law is not a continuous function but switches from one continuous structure
to another (according to the position of the system in the portion of the state delimited by the switching surface), its
use for fractional order systems poses new and significant challenges, especially for the numerical computation.

In [2] the behavior of the implicit Euler (IE) method for the numerical simulation of non-smooth dynamical systems
of integer order has been analyzed. It has been showed that, unlike the explicit Euler method which generates unwanted
spurious oscillations, the implicit scheme allows a smooth stabilization on the switching surface. This important feature,
which has been achieved after recasting the system into a Filippov’s differential inclusion framework, validates the IE
as a viable method for chattering suppression.

The main aim of this paper is to introduce the study of the counterparts of the IE method for fractional differential
equations (FDEs) when applied to problems with discontinuous right-hand side. As it is known, the IE method can
be generalized to FDEs according to different approaches, which give rise to different methods: we intend to verify
whether implicit schemes are able to prevent chattering phenomena also in the fractional case and detect which of the
generalizations of the IE method possess this feature. Furthermore we intend to discuss some of the major issues for
the implementation of implicit methods in the context under investigation.

This paper is organized as follows. In Section 2 some basic facts on fractional calculus are reviewed, FDEs with
discontinuity are introduced and some results concerning the Filippov’s regularization of discontinuous FDEs are
discussed. In Section 3 we present some of the most used numerical methods for FDEs. Interestingly, their application
to a discontinuous test FDE in Section 4 discloses some unexpected features: different schemes leading to the same
method when the order α  of the FDE tends to the nearest integer (i.e., when the FDE tends to an ordinary differential
equation (ODE)) behave in a different way in the presence of discontinuities; furthermore, only the method belonging
to the class of fractional Adams methods seems to preserve the chattering-free motion observed for the IE method
in the integer case. In Section 5 the attention is moved to the more general test problem introduced in [39] and we
discuss some practical aspects related to the use of implicit methods. Finally, in Section 6 we present the results of
some numerical simulations.

2.  Differential  inclusions  of  fractional  order

Historically, the origins of fractional calculus are strictly related to the Riemann–Liouville  definition of the integral
of order α  > 0 on the interval [t0, t]

Jα
t0
f  (t) = 1

�(α)

∫ t

t0

(t  −  s)α−1f  (s)ds,

where �(z) = ∫∞
0 tz−1e−tdt  is the Euler gamma function (for references to introductory material on fractional calculus

the reader is referred to any classical textbook on the subject, for instance [15,28,31,40]).
The definition of differential operators of fractional order is not unique and different approaches have been proposed.

For instance, the Riemann–Liouville  (RL) differential operator of order α  is defined as

RLDα
t0
f  (t) ≡  DmJm−α

t0
f  (t) = 1

�(m  −  α)

dm

dtm

∫ t

t0

(t  −  s)m−α−1f (s)ds,

where m  =�  α  � is the smallest integer such that m  > α  and Dm and dm/dtm denote the standard derivative of integer
order.

An alternative definition, commonly named as the Caputo  differential operator, has been introduced in [7,8] and it
is defined according to

CDα
t0
f  (t) ≡  Jm−α

t0
Dmf  (t) = 1

�(m  −  α)

∫ t

t0

(t  −  s)m−α−1f (m)(s)ds.
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