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Abstract

Our goal is to construct a nonstandard finite difference (NSFD) scheme for the linearized Euler partial differential equations
(PDE’s) modeling acoustic propagation in one space dimension. Unlike other works on this discretization problem, we formulate
it in terms of a single, second-order PDE rather than as two separate first-order equations. The important mathematical features of
this scheme are discussed.
© 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Our major task is to construct a nonstandard finite difference (NSFD) discretization for the linearized Euler partial
differential equations in one space dimension [1–3]. This work extends the earlier calculations of Goodrich [4] who
considered various issues related to the propagation of sound over either long times or long distances. These two
topics comprise several of the foundational problems in computational aeroacoustics and, to a good approximation,
may be modeled by the linearized Euler partial differential equations (PDE’s), which correspond to a first-order, linear
hyperbolic system [1]. These equations are [4]

ut + Mux + px = 0, (1.1)

pt + Mpx + ux = 0, (1.2)

where p (x, t) and u (x, t) are, respectively, the pressure and velocity, and the constant, M is the Mach number [2,3].
It should be noted that from a mathematical perspective, M can take any non-negative value. In particular, the work

of Goodrich [4] examines, for numerical purposes, a range of M values from zero to two. However, strictly speaking,
the linear approximations only hold for M values small compared to one, i.e., 0 ≤ M � 1. Our work implicitly makes
this assumption.

∗ Tel.: +1 404 880 6923; fax: +1 404 880 6258.
E-mail addresses: rohrs@math.gatech.edu.com, rmick23756@aol.com

http://dx.doi.org/10.1016/j.matcom.2013.11.008
0378-4754/© 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2013.11.008&domain=pdf
http://www.sciencedirect.com/science/journal/03784754
dx.doi.org/10.1016/j.matcom.2013.11.008
mailto:rohrs@math.gatech.edu.com
mailto:rmick23756@aol.com
dx.doi.org/10.1016/j.matcom.2013.11.008


190 R.E. Mickens / Mathematics and Computers in Simulation 127 (2016) 189–193

If we, respectively, add and subtract Eqs. (1.1) and (1.2), and define

w1 = u + p, (1.3a)

w2 = u − p, (1.3b)

then w1(x, t) and w2(x, t) satisfy the following PDE’s

[∂t + (1 + M)∂x]w1 = 0, (1.4a)

[∂t − (1 − M)∂x]w2 = 0. (1.4b)

Also, a direct calculation shows that both u (x, t) and p (x, t) are also solutions to

wtt + 2Mwtx − (1 − M2)wxx = 0, (1.5)

a hyperbolic, second-order, linear PDE. To show this, multiply Eqs. (1.4a) and (1.4b), respectively, by [∂t − (1 − M) ∂x]
and [∂t + (1 + M) ∂x], and simplify the resulting expressions to obtain the result of Eq. (1.5). From Eq. (1.4), we have

w(x, t) = w1(x, t) + w2(x, t), (1.6)

where

w1(x, t) = f [x − (1 + M)t], (1.7a)

w2(x, t) = g[x + (1 − M)t], (1.7b)

and f (z) and g (z) are arbitrary functions having continuous second derivatives. If the initial conditions are taken to be

u(x, 0) = u0(x), (1.8a)

p(x, 0) = p0(x), (1.8b)

then

u(x, t) =
(

1

2

)
{p0[x − (1 + M)t] − p0[x + (1 − M)t]}

+
(

1

2

)
{u0[x − (1 + M)t] + u0[x + (1 − M)t]}, (1.9)

p(x, t) =
(

1

2

)
{p0[x − (1 + M)t] + p0[x + (1 − M)t]}

+
(

1

2

)
{u0[x − (1 + M)t] − u0[x + (1 − M)t]}. (1.10)

Note that the expressions given in Eqs. (1.9) and (1.10) are the exact solutions to Eqs. (1.1) and (1.2) for the initial
conditions listed in Eq. (1.8).

We now demonstrate how a NSFD discretization can be constructed for Eq. (1.5).

2. NSFD scheme for Eq. (1.5)

To proceed, we first use the following discretizations for (x, t, w):⎧⎪⎪⎨
⎪⎪⎩

x → xm = (Δx)m; m = positive/negative integers;

t → tk = (Δt)k; k = 0, 1, 2, . . .;

w(x, t) → wk
m.

(2.1)
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