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Abstract

A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a
thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter
offers the possibility of predicting the outcome of interacting shock waves, i.e. shock jump heights and wave velocities after collisions
and overtakes. The stability of the linear solution part is investigated and a criterion for its stability is determined. For a number of
instances, the numerical results show formation of rarefaction waves. By using a similarity transformation, analytical expressions
for these rarefaction waves are found in the limit of no dissipation. Examples of compound shock waves are illustrated by numerical
simulations.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Shock waves appearing in thermoviscous fluids are solitary waves resulting from balancing nonlinearity with viscous
and heat conducting effects. The traveling wave approach has predominantly been used for nonlinear partial differential
equations of Hamiltonian type and for reaction diffusion problems. However, it is well known that the traveling wave
ansatz can be used to find shock waves in Burgers’ equation. Despite this fact it has only recently been appreciated
that the solitary wave approach is well suited for studies of various models of thermoviscous shocks. Jordan [12]
determined a traveling wave solution for the Kuznetsov equation [16] and later on successfully invoked the traveling
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wave approach for studies of nonlinear viscoelastic media [13,14]. In order to investigate high Mach number shock
wave propagation, Chen et al. [3] investigated a higher-order equation derived by Stderholm [24], allowing for a more
accurate assessment of traveling wave velocities.

In this paper compound shock waves are investigated in the model for thermoviscous fluids proposed by S6derholm
[24]. The studies are based on a generalization of the traveling wave ansatz for the velocity potential by adding a
function linear in the space and time variables to the traveling wave part [21,23]. The solution of the resulting ordinary
differential equation is given implicitly, in contrast to the explicit solutions found for the Kuznetsov equation in Ref.
[12] and a third order approximation to acoustic waves in thermoviscous fluid in Refs. [21,23]. The generalized ansatz
makes it possible to determine analytically the outcome of head-on colliding and overtaking shock waves. In order
to illustrate the solitary wave properties (or quasi soliton nature) of the traveling shock waves, collision and overtake
simulation experiments are performed for the shocks. The traveling wave shock solutions are equivalent to the Taylor
shock solution of the Burgers equation. However, in contrast to the Burgers equation the model studied here allows
counter propagating shocks.

The paper is organized as follows: In Section 2 the model equation is presented, in Section 3 a generalized traveling
wave ansatz is used to determine an implicit shock wave solution and in Section 4 rarefaction waves are investigated.
In Section 5 stability properties are studied and finally Section 6 deals with compound waves.

2. Model equation

In this investigation we use a model derived by Soderholm [24]. The wave propagation phenomena are restricted
to the case of plane waves with finite amplitudes in one spatial dimension and in a homogeneous medium. The fluid
particle velocity field is denoted by u=u(x, f), where x is the space variable and ¢ is time. The wave equation is
formulated in terms of the velocity potential v = ¥ (x, ) defined by

U= -y, ey

where subscript denotes partial differentiation. The dynamical equation governing the acoustic wave propagation reads
in terms of ¥ [24]
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Here y is the adiabatic index or ratio of the specific heats, cq is the small-signal speed of sound, and b is the diffusivity
of sound [10], which takes into account thermal and viscous losses. Eq. (2) is the one-dimensional version of the three-
dimensional model equation derived by S6derholm [24], taking only first order dissipative effects into account. The
derivation of the model in (2) is based on conservation of mass, i.e. the continuity equation, the momentum equation
including shear and bulk viscosity, the entropy equation for heat transfer and finally an equation of state relating pressure
p to the fluid density p and its entropy s [24,22]. In the model nonlinear contributions to dissipation is neglected. In
this case entropy can be eliminated reducing the number of equations. A key point is the equation of state p(p, s)
giving the pressure dependence on density p and entropy s. The parameter y in Eq. (2) originates from the equation of
state, and the dissipation parameter b depends on the specific heats. In order to discuss this we consider the first order
approximation for the pressure
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where pgy (po) is the static pressure (density) and n= ;. The lossless limit of Eq. (2), which is obtained by letting
b =0, appears in a number of works [10,20,2,19,9]. Some of these authors emphasize the fact that the equation is exact
for a lossless perfect gas, which is described by the following equation of state
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where p is the density and c is the velocity of sound. For b=0 Eq. (2) is exact in the sense that it can be derived from

the Euler equations without introducing any approximations. Accordingly, Christov et al. [5,4,6] denoted Eq. (2) with
b =0 the potential Euler equation.
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