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Highlights

• Numerical solutions of fractional RD systems are given using Green’s function formulations.
• The scheme proposed exhibit global approximation orders of O(hα).
• Proposed scheme exhibit better numerical approximation than traditional schemes.

Abstract

Reaction–diffusion equations with spatial fractional derivatives are increasingly used in various science and engineering fields
to describe spatial patterns arising from the interaction of chemical or biochemical reactions and anomalous diffusive transport
mechanisms. Most numerical schemes to solve fractional reaction–diffusion equations use finite difference schemes based on the
Grünwald–Letnikov formula. This work introduces a new systematic approach based on Green’s function formulations to obtain
numerical schemes for fractional reaction–diffusion equations. The idea is to pose an integral formulation of the equation in terms
of the underlying Green’s function of the fractional operator to subsequently use numerical quadrature to obtain a set of ordinary
differential equations. To illustrate the numerical accuracy of the method, dynamic and steady-state situations are considered and
compared with analytical and numerical solutions via Grünwald finite differences schemes. Numerical simulations show that the
scheme proposed improves the performance and convergence of traditional finite differences schemes based on Grünwald formula.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Reaction–diffusion systems have been used in various science and engineering fields. However, recent research
indicates that the classical diffusion equation is inadequate to model many real situations. For example, in processes
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where the particles spread at a faster rate than that predicted by Fickian diffusion and can present asymmetry.
This phenomenon is commonly known as anomalous diffusion [23,27]. Fractional reaction–diffusion equations can
describe a large number of physical processes controlled by anomalous diffusion. Some example include, solute
transport [31], transport in plasma turbulence [7], in the pattern formation [13,12], transport at the Earth surface [30],
diffusion through porous materials [3,34]. Lenzi et al. [18] showed that the anomalous diffusion is a suitable
framework for modeling transport in catalytic particles. Recently, Zheng et al. [38] considered fractal theory for
modeling diffusion in porous media, finding good agreement between experimental data and theoretical predictions.
On the other hand, Das [6] computed approximate analytical solutions for fractional diffusion equations that can be
used in the modeling of reaction–diffusion in catalytic systems. Liu et al. [21] used a fractional differential equation
to describe anomalous diffusion in a mobile/immobile transport model. Friess et al. [11] showed that non-Fickian
diffusion phenomenon should be considered for describing transport of some alcohol vapors in teflon material.

Different numerical methods have been used to solve both linear and nonlinear fractional reaction–diffusion
equations such as, standard discretization of the fractional-in-space operator [16], Fourier methods [4], homotopy
methods [17], finite element [37] and Grünwald fractional difference (GrFD). Due to its simplicity of computational
implementation, the latter is the most commonly used [22,8,25,5]. However, it is well-known that the discretization
of fractional derivatives by means of GrFD is of first-order accurate O(h) and it may lead to instabilities [33]. For
this reason, several works are focused in the derivation of stable and high-order schemes [9,10,36]. In [19], Li and
Zeng presented a review about GrFD schemes where they discussed their application to different types of fractional
differential equations.

Due to the extensive applications of the fractional models, it is necessary to dispose of stable numerical
methodologies with high approximation order. In this sense, recent studies have demonstrated that numerical schemes
based on Green’s functions are alternatives for solving reaction–diffusion equations [35]. In fact, systematic derivation
of nonstandard FD schemes can be obtained by means of Green’s function formulations [1,15]. In this work a
new systematic approach for the discretization of fractional reaction–diffusion equations based on Green’s function
formulations of the fractional operator is proposed. The numerical solution of proposed scheme is based on method
of lines (MOL), where a Runge–Kutta method is used for solving the ordinary differential equations (ODE) system
obtained. The paper is organized as follows. First we present the integral formulation of the fractional differential
equation [2,32]. Subsequently, a quadrature rule is used to obtain a set of ordinary differential equations. In addition,
depending on the discretization of the integral, a numerical scheme with equivalent structure to finite differences based
on Grünwald formula can be obtained. To illustrate the numerical accuracy of the method, the results are compared
with the analytical and numerical solutions via GrFD.

2. Preliminaries

For convenience, we start our derivations by presenting some definitions and properties of the fractional integral
and differential operators [2,32]. Later, we describe the derivation of integral formulation for solving fractional
reaction–diffusion systems.

For the study of fractional differential equations, different definitions of the derivatives and integrals have been
proposed [29,28,26]. The fractional integral operator of order α > 0 of a function u(x) is defined as [2],

I α
a u(x) =

1
Γ (α)

 x

a
(x − z)α−1u(x)dz (1)

where I α
a is the so-called Riemann–Liouville fractional integral operator of order α. On the other hand, the fractional

differential operator for a function u(x) is defined as [32],

Dα
a u(x) =

1
Γ (n − α)

 x

a
(x − z)n−α−1 dnu(z)

dzn dz (2)

where Dα
a is the Caputo derivative of order α and n is an integer such that n − 1 < α ≤ n. Note that when α = 2 one

recovers the classical diffusion operator. It is assumed that u(x) is a continuously differentiable function and piecewise
smooth, in order for the following considerations to be true [2,32],
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