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Highlights

• Simulation tool of the nonlinear dynamics of gene network models.
• Generation of all the possible trajectories in a single run.
• Characterization of the qualitative properties of predicted trajectories.
• Calculation of the probability of occurrence of each simulated trajectory.

Abstract

Advanced experimental technologies have made the disclosure of networks of intricate regulatory interactions between genes
and gene products feasible and revealed their extreme complexity. Thus, understanding which particular dynamical behaviors
derive from specific gene regulatory structures poses a challenging question, at both scientific and application level, that necessarily
requires computational tools to be answered. Herein, we discuss the algorithmic aspects and the implementation of a mathematical
method, grounded on singular perturbation analysis, for the study of the dynamics of regulated gene networks. This results in
a gene regulatory network simulator of the full range of possible dynamics of a specific class of ordinary differential equations
adequate to model gene regulatory networks. The considered class of equations represent phenomenological models of the long
interaction chains in a network: genes are the main players and the interactions between them are modeled by steep threshold-
dependent response functions. The simulator we propose operates in the presence of incomplete knowledge of parameter values. It
assumes that threshold-dependent regulation is modeled by continuous steep sigmoid functions, and each transcription factor only
regulates one gene at each of its thresholds. Under these assumptions, the simulator derives sound predictions of the nonlinear and
temporal multiscale dynamics of a gene regulatory network from an initial state and parameter space, symbolically described by
inequalities between parameters. Beside its predictive soundness, it outperforms other qualitative simulators as for characterization
of trajectories and possible calculation of the probability of occurrence of each behavior when parameters are assigned stochastic
values.
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1. Introduction

Networks of mutual interactions between molecular species (e.g., genes, RNAs, proteins, etc.) that regulate the
concentration levels and temporal patterns of gene products, the so-called Gene Regulatory Networks (GRN), can be
inferred by gene expression profiles as interaction graphs [16,5,1]. Also, interaction graphs represent the blueprint for
synthetic GRNs that are engineered to have a certain function [40]. The analysis of these interaction graphs, based
on graph theory, is suitable to gain new biological insights on the network structures underlying specific systems
through the identification of important network properties such as interlocking positive and/or negative feedback loops,
autoregulation, global interdependency, or signaling paths. But, the comprehension and prediction of the combined
effects of these phenomena, and then of the overall dynamics of GRNs, are very rarely within the capacity of intuition
and interaction graph analysis. Mathematical modeling and simulation frameworks are a must [2] to (1) capture
the complexity of the mostly nonlinear network dynamics, (2) predict, in both normal and mutant organisms, the
behavioral changes due to endogenous or exogenous perturbations or (3) test the coherence and completeness of
regulation network structures hypothesized to underlie specific systems.

Several frameworks for modeling and simulating GRNs, in both deterministic and stochastic contexts, have been
proposed [10,27,30,41]. They differ one from each other in goals, strengths and weaknesses, resolutions, discrete or
continuous, at which they capture network dynamics as well as in the way they model the response functions. The
suitability of either one or the other approach to study a specific network depends on modeling tasks, applicability and
generalization.

Among the proposed approaches for modeling GRNs, a great attention has been paid to Ordinary Differential
Equation (ODE) models that provide a continuous and accurate representation of the dynamics of the concentrations
of gene products. Several computational frameworks for the thorough study of biochemical reaction networks are
currently available, e.g. COPASI [22] and DBSolve [17], but their use is limited to quantitative ODE models where the
equations describe the intracellular dynamic processes and values of kinetic parameters and molecular concentrations
are given specific values. With exception of well-studied small GRNs, precise and quantitative information on
the biochemical reaction mechanisms underlying regulatory interactions, and on values of kinetic parameters and
molecular concentrations are frequently unknown and hard to estimate from noisy high-throughput data. Thus, the
formulation of models that can be analyzed and simulated with the above-mentioned tools is typically hampered for a
great number of cases. However, at the current state of knowledge, the key issue is to understand how specific activity
patterns derive from given network structures and what different types of dynamical behaviors are possible. Thus,
qualitative analysis and simulation of GRN dynamics is a rather appropriate solution.

Phenomenological ODE models, that are the continuous analogues of Boolean networks [44,42,45], can be derived
from the interaction graphs of GRNs by using concepts and ideas from mathematical logic combined with earlier
ideas on allostery and cooperativity [36], that lead to a sigmoidal rate dependence of key metabolites. Since their first
introduction, these models have gained an increasing experimental support [23] that makes them reasonably acceptable
and adequate to model gene regulation mechanisms. Following the pioneering efforts in this direction started in
the early 1970s [19], several frameworks for modeling the dynamics of GRNs with interaction terms described by
steep sigmoids around certain thresholds or approximated by binary on–off functions have been developed. In the
former case, the effect of a transcription factor on the transcription rate of a gene, the response function, is described
phenomenologically by a sigmoidal function of its concentration with a pronounced threshold behavior (e.g. Hill
function), and the network dynamics is modeled by nonlinear ODEs [34]. In the latter one, a Heaviside step function
approximates the response function and Piecewise Linear (PL) ODEs [18,13] model the network dynamics. The
problem of analyzing the behavior of both classes of models has been tackled under a variety of assumptions and with
the support of the available body of theory and methods for the analysis of dynamical systems.

The major problem with PL-ODEs is that they are not defined in the threshold hyperplanes where response
functions discontinuously switch. Earlier investigations considered PL models under the further simplifying
assumptions of single threshold per gene, uniform decay rates and no effective autoregulation, and developed
mathematical methods for the calculation of continuous trajectories, also across the threshold hyperplanes, from
given initial conditions [18,35,13]. Extensions of the proposed methods to models with multiple thresholds and non-
uniform decay rates do not present particular difficulties as far as the calculation of trajectories but raise non-trivial
problems when effective autoregulation is introduced. The problem of defining a continuous solution across threshold
hyperplanes when PL models include autoregulation, ubiquitous in cellular systems, has been tackled by considering
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