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Abstract

We study a class of Padovan-like sequences that can be generated using special matrices of the third order. We show that terms
of any sequence of this class can be expressed via Bell polynomials and their derivatives using as arguments terms of another
such sequence with smaller indices. Computer algebra system (CAS) Mathematica was used for cumbersome calculations and
hypothesis-testing.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Integer sequences appear in many branches of science. The Fibonacci and Padovan sequences have long been
used in purely theoretical problems of mathematics (such as in the famous solution of 10th Hilbert problem by Yu.V.
Matiyasevich [10]) as well as in many applications (see. e.g. Wikipedia page on Fibonacci heap [7]), and purely
technical disciplines, such as architecture [11]. Recently, a new and elegant result of Viswanath [12] related to the
properties of random Fibonacci numbers, stimulated the interest of researchers to the properties of these sequences
in terms of the behavior of stochastic dynamical systems [2,4]. On the other hand, continues the study of algebraic
relations of these sequences with combinatorial polynomials (Fibonacci, Padovan, Chebyshev, Kravchuk) naturally
associated with them. Fibonacci numbers are known for more than two thousand years, Padovan numbers are much
younger—they were introduced only recently [9]. Below, we will study Padovan-like sequences that can be generated
using special matrices of the third order. We will find expressions for terms of one sequence in terms of the other
sequence via Bell polynomials (also known in the combinatorial theory as “partition polynomials”).

So-called matrix method of generation of such sequences and their various generalizations is widely used in
many of the problems mentioned above. As an example one can mention recent papers [3,14,15], in which this
method was used to study various algebraic properties (generating function, generalized Binet formula, sums, etc.) of
these sequences. In contrast to this papers, also using the (different) matrix method, we establish a purely algebraic
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(polynomial) relationship between terms of various sequences. This allows us to construct a polynomial algorithm
that “recalculates” terms of any of the sequences of this family to another sequence of the same family using CAS.

CAS Mathematica was used for cumbersome calculations and hypothesis testing.
Everywhere in what follows all matrices have dimension 3 × 3 and are being denoted by uppercase letters except

the matrix

e =

0 1 0
0 0 0
0 0 0


that plays a special role in our considerations. We write [X ]i j to denote the (i, j)-entry, 1 ≤ i, j ≤ 3 in a matrix X .

The following formulas for matrix e and any matrices X, Y, X1, . . . , Xs are obvious:

e2
= 0; [Xe]22 = [X ]21; [e]11 = [Xe]11 = 0; [XeY ]11 = [X ]11 · [Y ]21; (1)

eX1eX2e . . . eXse =


s

r=1

[Xr ]21


· e; [eX1eX2e . . . eXse]11 = 0. (2)

Furthermore, a (strong) composition of an integer n into k parts, is a way of writing n as the ordered sum of k
strictly positive integers [1,6], but if zero terms are still allowed the composition is said to be weak. The numbers of
these compositions (respectively) are:

Comp(n, k) =


n − 1
k − 1


, Compw(n, k) =


n + k − 1

k − 1


(3)

and these numbers are set to be 0 for n = 0.
A partition of an integer n into k parts, is a way of writing n as (unordered) sum of k strictly positive integers [2]. It

is easy to see that to any partition 1 j12 j23 j3 . . . (n−k +1) jn−k+1 of n into k parts, where j1 + j2 + j3 +· · ·+ jn−k+1 = k
and 1 · j1 +2 · j2 +3 · j3 +· · ·+ (n − k +1) · jn−k+1 = n, there corresponds exactly k!

j1! j2! j3!... jn−k+1!
compositions of n

into k parts via ordering the summands in the partition. So, the sum of monomials xi1 xi2 . . . xik , where the sequences
{i1, i2, . . . , ik} are running over all compositions of n into k parts and where {xr }r≥1 is the (infinite) set of commuting
variables, is equal to the analogous sum over all partitions of n into k parts:

Comp

xi1 xi2 . . . xik =


Part

k!

j1! j2! . . . jn−k+1!
x j1

1 x j2
2 . . . x jn−k+1

n−k+1

=
k!

n!
Bn,k(x1 · 1!, x2 · 2!, . . . , xn−k+1 · (n − k + 1)!)

= B∗

n,k(x1, x2, . . . , xn−k+1), (4)

where

Bn,k(x1, x2, . . . , xn−k+1) =

 n!

j1! j2! . . . jn−k+1!

 x1

1!

 j1  x2

2!

 j2
. . .


xn−k+1

(n − k + 1)!

 jn−k+1

(5)

are the partial Bell polynomials, and where the sum is running over all (n − k + 1) sets { j1, j2, . . . , jn−k+1} of non-
negative (and non-zero) integers such that j1 + j2 + j3 + · · · + jn−k+1 = k and 1 · j1 + 2 · j2 + 3 · j3 + · · · + (n −

k + 1) · jn−k+1 = n (see [5]).
Mathematica 9 contains function Bell Y


n, k, {x1, x2, . . . , xn−k+1}


which gives the partial Bell polynomial

Bn,k(x1, x2, . . . , xn−k+1), but here we use in fact a slightly modified form of these polynomials

B∗

n,k(x1, x2, . . . , xn−k+1) =
k!

n!
Bn,k(x1 · 1!, x2 · 2!, . . . , xn−k+1 · (n − k + 1)!),

according to formula (4).

Example 1. The full set of compositions of n = 5 into k = 3 parts is

{{3, 1, 1} , {2, 2, 1} , {2, 1, 2} , {1, 3, 1} , {1, 2, 2} , {1, 1, 3}}
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