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Abstract

The EGARCH and GJR-GARCH models are widely used in modeling volatility when a leverage effect is present in the data.
Traditional methods of constructing prediction intervals for time series normally assume that the model parameters are known,
and the innovations are normally distributed. When these assumptions are not true, the prediction interval obtained usually has the
wrong coverage. In this article, the Pascual, Romo and Ruiz (PRR) algorithm, developed to obtain prediction intervals for GARCH
models, is adapted to obtain prediction intervals of returns and volatilities in EGARCH and GJR-GARCH models. These adjust-
ments have the same advantage of the original PRR algorithm, which incorporates a component of uncertainty due to parameter
estimation and does not require assumptions about the distribution of the innovations. The adaptations show good performance in
Monte Carlo experiments. However, the performance, especially in volatility prediction, can be very poor in the presence of an
additive outlier near the forecasting origin. The algorithms are applied to the daily returns series of the GBP/USD exchange rates.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The prediction of future values is a key objective in time series analysis, and it is of interest in many areas of
knowledge, such as economics, finance, production planning, and sales forecasting. The importance stems from the
fact that it is advantageous to know the likely evolution of the series in the future.

Generally, these predictions are given as point estimates, although the prediction interval is even more impor-
tant [17]. Nevertheless, authors of textbooks on time series analysis and forecasting generally devote little attention to
prediction intervals and give little guidance on how to calculate them [5, p. 479]. Also, in general prediction intervals
are calculated under the assumption that the model is known and errors are normally distributed.

In the financial time series literature there is little work on procedures to obtain prediction intervals for return and
volatility in the GARCH family. Moreover, some stylized facts like (conditional) innovation distribution with heavy
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tail and asymmetry, and the leverage effect affect the coverage of the traditional intervals, making the predictions
inadequate and generally leading to a greater risk than is desirable.

An alternative to solve this problem is to obtain prediction intervals using the bootstrap procedure, which does
not require any assumption on the distribution of the innovations [7]. In recent decades, several works have proposed
bootstrap procedures to construct intervals for time series prediction. In a seminal work in this area, [21] constructed
intervals for autoregressive models using bootstrap replicates and fixing the latest p observations, where p is the
autoregressive order, [20] also constructed prediction intervals for autoregressive models using bootstrap replicates
but start the bootstrap with a randomly chosen block of size p from the observed series. In the financial time series
field, we can mention the work of [14] proposing a bootstrap procedure to obtain intervals for forecasting in ARCH
processes; [19], who obtained prediction intervals for ARCH models; [18], who extended the procedure presented
by [16] to ARIMA models for predicting volatility and return densities in GARCH processes; [6], who proposed new
methods for prediction intervals of return and volatility in ARCH and GARCH models; [13], who used bootstrap sub
sampling for interval prediction in GARCH models; among others.

One bootstrap method for prediction intervals for volatility models that has shown good results, and that appears
to be generalizable to other models is the method proposed by [18] (PRR) for GARCH models. This method incorpo-
rates the uncertainty of the estimation in the forecasting interval, since the parameters are estimated at each bootstrap
replication. The method also does not depend on the (conditional) innovation distribution. This paper proposes an
adaptation of the PRR algorithm developed for prediction intervals for GARCH models, to get prediction intervals for
EGARCH and GJR-GARCH models. The paper also studies the effect of additive outliers on the proposed prediction
intervals.

The paper is organized as follows: Section 2 introduces the volatility models, Section 3 presents the bootstrap
procedures for obtaining prediction intervals for EGARCH and GJR-GARCH models. Section 4 presents the results
obtained by simulation; and Section 5 presents an application of the proposed procedures to the daily returns series of
the GBP/USD exchange rates. Section 6 concludes.

2. The EGARCH and GJR-GARCH models

GARCH models [3] have been widely used in modeling volatility. Based on this model, other models have been
proposed to incorporate other stylized facts, such as the leverage effect. In this sense, we mention the EGARCH [15]
and GJR-GARCH models [10]. Given its popularity in empirical applications, in this paper we focus on the
EGARCH(1,1) and GJR-GARCH(1,1) models.

Definition 2.1 (Univariate EGARCH Model). An EGARCH(1,1) process, {rt }, is defined as:

rt = σtεt ,

log(σ 2
t ) = ω + αεt−1 + γ (|εt−1| − E |εt−1|) + βlog(σ 2

t−1),
(2.1)

where ω, α, β, γ , are real numbers, and εt ∼ I I D(0, 1) (independent and identically distributed random variables
with zero mean and unit variance). Particularly, when |β| < 1, the EGARCH model is stationary if εt comes from
Gaussian or Generalized Error Distribution (GED) with shape parameter >1. Nevertheless, if εt comes from Student-t
or a GED distribution with shape parameter ≤1, the EGARCH model is stationary if γ ≤ −|α|. An advantage of this
model is that there is no restriction imposed to ensure that the variance is positive.

Definition 2.2 (GJR-GARCH Model). A GJR-GARCH(1,1) process, {rt }, is defined as:

rt = σtεt ,

σ 2
t = ω + αr2

t−1 + βσ 2
t−1 + γ r2

t−1 I (rt−1 < 0),
(2.2)

where, I (·) is the indicator function, εt ∼ I I D(0, 1), ω > 0 and α, β, γ are non-negative real numbers for ensuring
positive σ 2

t . The model is stationary if γ < 2(1 − α − β).
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