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Abstract

We use a nonoverlapping iterative domain decomposition procedure based on the Robin interface condition to develop a new
multiscale mixed method to compute the velocity field in heterogeneous porous media. Hybridized mixed finite elements are used
for the spatial discretization of the equations. We define local, multiscale mixed basis functions to represent the discrete solutions
in subdomains. Appropriate subspaces of the vector space spanned by these basis functions can be considered in the numerical
approximations of heterogeneous porous media flow problems. The balance between numerical accuracy and numerical efficiency is
determined by the choice of these subspaces. A detailed description of the numerical method is presented. Following that, numerical
experiments are discussed to illustrate the important features of the new procedure and its comparison to the traditional fine grid
simulations.
© 2013 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

We are concerned with the development of numerical procedures for the fast and accurate approximation of sub-
surface flows that can take advantage of heterogeneous (e.g., CPU–GPU clusters) processing units. Such units are
relatively inexpensive and have larger computational power (by one or two orders of magnitude) than CPUs alone.
In the case of second order elliptic equations, multiscale procedures have the potential to fit well within the above
mentioned heterogeneous computational environments because GPUs can be efficiently used to solve many small local
problems that are posed by such procedures.

We present a new multiscale method based on a nonoverlapping iterative domain decomposition for mixed finite
elements introduced in [10]. Domain decomposition techniques for mixed methods distinct from the one used here can
be found in, e.g., [5,8,12,13,15,16].

The development of multiscale numerical procedures for second order elliptic equations arising in porous media
flow problems has attracted the attention of several research groups. We refer the reader to the recent publications
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[7,11] and [17] for references and also a very comprehensive comparison of several procedures of this type. More
recent developments include [19] along with [14] among many others. In [14] the authors make use of the concept of
a multiscale flux basis. A similar concept will be used in this work.

In the work presented here we define an iterative domain decomposition algorithm taking advantage of multiple
grids and a new family of local basis functions to approximate large problems efficiently.

The new procedure has some distinctive properties:

• Three length scales are introduced in the definition of the procedure: the solution is sought in the finest scale (h);
multiscale basis functions are defined in the subdomains associated with the coarsest scale (H). Flux conservation
is directly imposed on an intermediate scale (H  with h ≤  H  ≤  H). If H  =  h  the new method produces the mixed
finite element solution in the finest scale.

• The approximation is locally conservative at the H  scale through the use of mixed finite elements. Discontinuous
coefficients and source terms can be naturally handled.

• A post-processing step is introduced to recover the solution in the fine grid, given the solution with flux conservation
at the H  scale. A downscaling procedure ensures local conservation at the h scale.

• The implementation of the iterative scheme, which is based on the Robin interface conditions imposed on the
intermediate scale, is straightforward and converges fast.

• The procedure fits well in heterogeneous processing units (CPU–GPU): all the local problems can be efficiently
solved in GPUs. These local problems are relatively small and fit in the GPU memory. Moreover, the iterative
procedure associated with the global problem in a coarse grid takes place only at the boundaries of the coarse grid
blocks, and can also run in GPUs.

This paper is organized as follows. In Section 2 we describe the mixed formulation of the elliptic problem considered
in this work, next we give a step-by-step formulation of the new multiscale mixed method (MuMM), first introducing
a discretization by hybridized mixed finite elements and a modified Robin condition, followed by the description of
the MuMM iteration. In Section 3 the computational implementation is described: multiscale basis functions of Robin
type are introduced and a post-processing step is discussed. Section 4 provides several numerical results for the new
method. Finally, Section 5 contains our concluding remarks.

2.  The  multiscale  mixed  method  (MuMM)

2.1.  The  pressure  equation  and  its  variational  formulation

For simplicity in the presentation, we consider Ω  ⊂  R2, a bounded domain with a Lipschitz boundary ∂Ω. The
authors are currently extending this work to problems in R3. The pressure–velocity system in the single-phase porous
media flows [6] is given by

∇  · u  =  q,  and u  =  −K(x)∇p,  (2.1)

where K(x) is known as the absolute permeability (a positive definite tensor), u  is the Darcy velocity, p  is the pressure
and q  = q(x) represents sources and sinks. Typical boundary conditions that occur in subsurface flow problems are
Dirichlet and Neumann, which are respectively expressed as

p  =  pb on ΓD, u  · �  =  ub on ΓN,

where ∂Ω  =  ΓD ∪  ΓN , ΓD∩  Γ N = ∅ and � is the outward unit normal vector.
Our numerical procedure is derived from the weak formulation of the above pressure–velocity system which is

described globally. To do so, we first define the following spaces:

W(Ω) =  L2(Ω),

H(div; Ω) =  {v  ∈  (L2(Ω))
2 |  div v  ∈  L2(Ω)},

Vg(Ω) =  {v  ∈  H(div; Ω) | v · � =  g  on ΓN},
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