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Abstract

We simulate a diffuse interface model issuing from a seawater intrusion problem in a confined aquifer. We first use a P1 finite
element method for which we establish error estimates for any solution sufficiently regular. We propose a finite volume method
and we compare the results given by these two methods.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Groundwater is a major source of water supply in many parts of the world. In coastal zones, which are densely
populated areas, the intensive extraction of freshwater yields to local water table depression causing sea intrusion
problems. Then the optimal exploitation of fresh water and the control of seawater intrusion in coastal aquifers are
the challenges for the future water supply engineers and managers. We need efficient and accurate models to simulate
the transport of salt water front in coastal aquifer. We distinguish two important cases: the case of free aquifer and the
one of confined aquifer. In these 2 cases, the aquifer is bounded by two layers, the lower layer is always supposed to
be impermeable. For the confined aquifer, the upper surface of the aquifer is impermeable and for the free aquifer, the
upper surface is a permeable layer constituted by gravels, sand or alluvia. In this paper, we are interested in efficient
numerical algorithms to solve the evolution of the sea front in the case of confined aquifer but we emphasize that
we can generalize our result to the case of free aquifer. The basis of the modeling is the mass conservation law for
each species (fresh and salt water) coupled with the classical Darcy law for porous media. Of course, freshwater and
saltwater are miscible fluids and therefore the zone separating them takes the form of transition zone with variable
concentration of salt. But for certain problems, the simulation can be simplified by assuming that each liquid is
confined to a well defined portion of the flow domain with an abrupt interface separating the two domains called
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sharp interface. In this paper, we suppose the existence of a diffuse interface between the fresh and salt water with
a constant thickness δ. Using phase function introduced in Allen–Cahn model we obtain a supplementary diffusive
term −δ∇ · (∇h) in the finale equation governing the evolution of the interface depth h. Of course, this term allows
us to get more regularity on the solution but also to ensure a maximum principle naturally satisfied by the solution.
The second approximation – so called Hydraulic approximation – consists in vertical averaging of the model. We thus
assume quasi-horizontal displacements, hence we get a 2D-vertically averaged model. This assumption is legitimate
when the thickness of the aquifer is small compared to the width and length of the aquifer and also when the flow is
far from sinks/wells. We refer to [1,7,9], (and a long list of references therein) for more details about sea intrusion
problems with sharp interface approach and to [2] about model with constant diffuse interface approach.

The evolution of the depth of the interface and of the freshwater hydraulic head are given by a coupled
two-dimensional system consisting of an elliptic and a parabolic equations. In the first part of the paper, we introduce
a semi-implicit in time scheme combined with a P1 finite element method to discretize our problem. We establish an
error estimate for the full discretization. The proof of this result is based on the specific properties of the exact solution,
namely the maximum principle satisfied by the solution and a uniform in time bound in L∞-norm of the gradient of
the solution, for sufficiently regular boundary and initial data. In the second part, we present a finite volume scheme
based on the intrinsic nature of the model that derive from conservative laws.

The outline of the paper is the following one. Section 2 is devoted to the model and its derivation. In Section 3
all mathematical notations and global in time existence results are stated. Section 4 is devoted to the presentation
and error analysis of the finite element scheme. In Section 5, we present the finite volume method. In Section 6, we
conducted numerical experiments in order to compare the approximate solutions obtained by these two schemes.

2. Modeling

2.1. Conservation laws

The basis of the modeling is the mass conservation law for each species (fresh and salt water) coupled with the
classical Darcy law for porous media. The Darcy law relating together the effective velocity q of the flow and the
hydraulic head Φ reads:

q = −K grad(Φ), K =
κρg

µ
. (1)

The hydraulic head is given by

Φ =
P

ρg
+ z,

where ρ and µ are respectively the density and the viscosity of the fluid, κ is the permeability of the soil and g the
gravitational acceleration constant.

The matrix K is the hydraulic conductivity. It expresses the ability of the ground to conduct water, K is proportional
to κ the permeability of the ground which only depends on the characteristics of the porous medium and not on the
fluid.

At this point, introducing specific index for the fresh ( f ) and salt (s) waters and using (1), we derive from the mass
conservation law for each species (fresh and salt water) the following model:

Sf ∂tΦ f + ∇ · q f = Q f , q f = −K f ∇Φ f , K f = kgρ f /µ f ,

Ss∂tΦs + ∇ · qs = Qs, qs = −Ks∇Φs, Ks = kgρs/µs .

The coefficient of water storage Si (i = f, s) characterizes the workable water volume. It accounts for the rock and
fluid compressibility. In general, for example in confined aquifer, this coefficient is extremely small (of order of water
compressibility). For the free aquifer, it is of order of the porosity of the medium.

Applying the vertical averaging of the model, we integrate the mass conservation law between the upper surface h1
and the depth of the interface h in the fresh water zone and between the depth of the interface h and the lower surface
h2, in the salt water zone (cf. Fig. 1).
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