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Abstract

This paper is devoted to a new family of nonlinear cell-average multiresolution schemes and its applications to image process-
ing. The algorithms are based on nonlinear reconstruction operators with several desirable features: the reconstructions are third-
order accurate in smooth regions, the data used is always centered with optimal support and they are adapted to the presence of
discontinuities.

The goal is to obtain similar properties as linear multiresolution schemes but avoiding the classical Gibbs phenomenon of this
type of reconstructions. Applications to image compression and denoising will be presented.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In the last years, various techniques to improve the classical linear multiresolutions of wavelet type have led to
nonlinear multiresolutions [10,12,14,15,21,22].

In [2], in the context of image compression, a new nonlinear point-value multiresolution, called PPH (for Piecewise
Polynomial Harmonic), has been presented. Convergence and stability of its associated subdivision scheme are derived
[14]. In [3], we established the stability of the PPH multiresolution that, due to nonlinearity is not a consequence of the
stability of the associated subdivision scheme. Edge resolution, robustness with regard to texture or noise, accuracy
and compression capabilities have been numerically investigated.

In most of the considered models in the study of image processing methods, the starting point is to assume that
images are L1 functions with certain regularity. For instance, it is possible to find models working in BV , B1
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W 1,1, [11,13,16]. Thus, it is natural to consider cell average discretization operators when L1 is the space where the
original function lives.

In this paper we introduce a new family of cell-average multiresolution schemes that work in the cell-average
framework that is a setting more adapted to image applications. We will make use of the so called p-power means [24].
In [5] a particularization of these schemes (p = 2) was used for image compression.

In the numerical experiments we consider a particularization of the original family presented, comparing its per-
formance through some numerical examples for color image compression and color image denoising. The aim is to
reduce the Gibbs phenomenon [17] of linear multiresolution schemes while maintaining similar performance.

This paper is organized as follows: In Section 2 we recall the Harten framework and we present a new family of
nonlinear cell-average multiresolution schemes. In Section 3, we find the exponent p that performs better for the p
means. Using the bivariate context of tensor product, the new family of reconstructions is tested in Section 3 on color
images, allowing to compare the performances of linear and nonlinear schemes.

2. The Harten framework

In this Section we review Harten’s framework for multiresolution, considering the cell-average setting.
Harten’s general framework for multiresolution [9,18,19] relies on two operators, decimation and prediction, that

define the basic interscale relations. These operators act on linear vector spaces, V k , that represent the different
resolution levels (k increasing implies more resolution)

Dk−1
k : V k

→ V k−1 (1)

Pk
k−1 : V k−1

→ V k (2)

and they must satisfy two requirements of algebraic nature: (a) Dk−1
k must be a linear operator and (b) Dk−1

k Pk
k−1 =

IV k−1 (consistency), i.e., the identity operator on the lower resolution level represented by V k−1.

2.1. The cell-average multiresolution setting

Let us consider a set of nested grids in R:

X k
= {xk

j } j∈Z, xk
j = jhk, hk = 2−k, k = 0, . . . , L ,

where we consider the discretization

Dk : L1(R) → V k, f k
j = (Dk f ) j =

1
hk

 xk
j

xk
j−1

f (x)dx, j ∈ Z, (3)

where L1(R) is the space of absolutely integrable functions in R and V k is the space of sequences at resolution k.
From the additivity of the integral, we obtain the decimation steps:

f k−1
j = (Dk−1

k f k) j =
1

hk−1

 xk−1
j

xk−1
j−1

f (x)dx =
1

2hk

 xk
2 j

xk
2 j−2

f (x)dx =
1
2
( f k

2 j−1 + f k
2 j ).

The consistency requirement for Pk
k−1 becomes

f k−1
j = (Dk−1

k Pk
k−1 f k−1) j =

1
2
((Pk

k−1 f k−1)2 j−1 + (Pk
k−1 f k−1)2 j ).

Hence, if f k−1
= Dk−1

k f k , then the two last equations imply that the prediction errors satisfy

ek
2 j−1 = f k

2 j−1 − (Pk
k−1 f k−1)2 j−1 = (Pk

k−1 f k−1)2 j − f k
2 j = −ek

2 j ,

which shows the redundancy inherent in the prediction error.
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