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Abstract

Recently, several techniques have been developed to fill polygonal holes in a given surface by using C 1-spline patches. Such
techniques are based on the minimization of an energy functional which controls the fairness of the patch as well as its closeness
to the original surface where it is known, that is, outside the hole. Nevertheless, the filling patch obtained tends to be flat due to the
definition of the energy functional, so the used technique does not work properly in certain cases. Here we propose to generalize
the filling method previously developed in other works in order to fill holes with some ‘shape’ conditions, i.e., in such a way that
the filling patch ‘inherits’ as much as possible the shape of the original surface where it is known.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In the last few years, several variational methods have been developed in relation with the approximation or
interpolation of a given set of scattered data. Most of these variational approaches consist of minimizing an energy
functional that usually contains two terms: the first indicates how well the curve or surface approximates or interpolates
the data set, while the second controls the degree of smoothness or fairness of the curve or surface. A wide range of
minimization functionals have been proposed, derived from physical considerations (e.g. stretch energy or bending
energy) or geometric entities (e.g. curve length, surface area or curvature). Discrete smoothing Dm-splines [1,2]
provide specific examples of variational curves and surfaces. These splines minimize, in a finite element space,
some quadratic functionals that contain terms associated with Sobolev seminorms. These variational methods receive
considerable attention due to their efficiency and usefulness in the fitting and design of curves and surfaces.

On the other hand, the problem of filling holes or completing a 3D surface arises in all sorts of computational
graphics areas, like CAGD, CAD–CAM, Earth Sciences, computer vision in robotics, image reconstruction from
satellite and radar information, etc. Several works related to the field of filling holes have been published in the last
few years (e.g., [7,9,12] and [5]).

Regarding the field of hole filling, the authors of this work have recently developed a technique to fill polygonal
holes in a given surface by using C 1-spline patches (see e.g. [5,8]). Such technique is based on the minimization of

∗ Corresponding author.
E-mail address: mafortes@ugr.es (M.A. Fortes).

http://dx.doi.org/10.1016/j.matcom.2014.12.008
0378-4754/ c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2014.12.008&domain=pdf
http://www.elsevier.com/locate/matcom
http://dx.doi.org/10.1016/j.matcom.2014.12.008
http://www.elsevier.com/locate/matcom
mailto:mafortes@ugr.es
http://dx.doi.org/10.1016/j.matcom.2014.12.008


M.A. Fortes et al. / Mathematics and Computers in Simulation 118 (2015) 198–212 199

an energy functional which controls the fairness of the patch as well as its closeness to the original surface where it
is known, that is, outside the hole. Nevertheless, the filling patch obtained tends to be flat due to the definition of the
energy functional, in such a way that this approach is not adequate for certain applications.

In this work we propose to generalize the filling method previously developed in other works in order to fill holes
with some shape conditions, i.e., in such a way that the filling patch ‘inherits’ as much as possible the shape of the
original surface where it is known.

In real single-variable Calculus, there are definitions for increasing, decreasing, concave and convex functions.
These definitions involve derivatives and make reference to shape characteristics of the functions. Following this idea,
given a data function f with a hole, the method we propose in this work consists of ‘estimating’ the shape of f inside
the hole by constructing functions that estimate the unknown derivatives of f inside the hole. To this end, we utilize
the information available of f outside the hole. Then, we obtain a filling patch for f whose derivatives inside the hole
be as close as possible to the ‘estimated ones’ of f , pretending in this way that the shapes of f and its filling patch be
close.

This paper is organized as follows: in Section 2, we recall some preliminary concepts and we fix the notation. In
Section 3 we formulate the problem we want to solve. Section 4 is devoted to the study of the problem: we prove the
existence and uniqueness of solution and we show how to compute it. Finally, in Section 5 we give some graphical
and numerical examples. In such examples we compare the results obtained when the filling patch is constructed with
or without shape conditions. At the end of the paper, we briefly explain a method to obtain optimum values for the
parameters involved in the considered functionals.

2. Notation and preliminaries

Let D ⊂ R2 be a polygonal domain (an open non-empty connected set) and let us consider the Sobolev space
Hr+1(D), r ≥ 1, whose elements are (classes of) functions u defined on D such that their partial derivatives (in the
distribution sense) ∂βu belong to L2(D), with β := (β1, β2) ∈ N2 and |β| := β1 + β2 ≤ r + 1. For any open subset
X ⊂ D we consider the usual inner semi-products

(u, v)m,X :=


|β|=m


X
∂βu(x)∂βv(x)dx, m = 0, . . . , r + 1;

the seminorms

|u|m,X := (u, u)1/2m,X =

 
|β|=m


X
∂βu(x)2dx

1/2

, m = 0, . . . , r + 1;

and the norm

∥u∥X =


r+1
m=0

|u|
2
m,X

1/2

=

 
|β|≤r+1


X
∂βu(x)2dx

1/2

. (1)

We will denote ⟨·⟩n the usual Euclidean norm and ⟨· , ·⟩n the Euclidean inner product in Rn .

Given α ≥ 1, let T be an α-triangulation of D, i.e., a triangulation that satisfies the condition

1 ≤
RT

2rT
≤ α

for all closed triangles T ∈ T , RT and rT being the radii of the circumscribed and inscribed circles of T , respectively
(see e.g. [13]). We consider the associated Powell–Sabin triangulation T6 of T (see e.g. [10]): The micro-triangles
in T6 are obtained by joining the center ΩT of the inscribed circle of each interior triangle T ∈ T to the vertices of
T and to the centers ΩT ′ of the inscribed circles of the neighboring triangles T ′

∈ T . When T has a side lying on
the boundary of D, the point ΩT is joined to the mid-point of this side, to the vertices of T and to the centers ΩT ′

of the inscribed circles of the neighboring triangles T ′
∈ T . Hence, all the micro-triangles inside any T ∈ T have

the incenter of T as a common vertex. Nevertheless, Powell–Sabin subtriangulation can be also obtained by using the
barycenter instead of the incenter of T in the split procedure for certain triangulations (e.g. ∆1-type triangulations).
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