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Abstract

In previous works, we investigated the use of local filters based on partial differential equations (PDE) to denoise one-
dimensional signals through the image processing of time–frequency representations, such as the spectrogram. In these image
denoising algorithms, the particularity of the image was hardly taken into account. We turn, in this paper, to study the performance
of non-local filters, like Neighborhood or Yaroslavsky filters, in the same problem. The reformulation of the Neighborhood filter
using the decreasing rearrangement allows us to implement an efficient algorithm. The integral histogram introduced by Porikli
allows him in Porikli (2008) to obtain an implementation of the Yaroslavsky filter with a computational cost independent of the
size of the box spatial local kernel. We heuristically justify the connection between the (fast) Neighborhood filter applied to a
spectrogram and the corresponding Nonlocal Means filter (accurate) applied to the Wigner–Ville distribution of the signal. This
correspondence holds only for time–frequency representations of one-dimensional signals, not to usual images, and in this sense
the particularity of the image is exploited. We compare though a series of experiments on synthetic and biomedical signals the
performance of local and non-local filters.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Denoising one-dimensional signals is an important topic which is usually addressed from filter theory in time or
frequency domains. In some applications in which processing speed is not a fundamental issue, filters defined in the
joint time–frequency domain may be considered, usually improving the filtering process. Examples of this situation
are found in Electrocardiogram (ECG) and other biomedical signals [24], human voice analysis [26] or animal sound
analysis [12].

With respect to the latter, in previous works [6–8] we investigated the use of time–frequency distributions to esti-
mate the number of wolves howling in a given recording to provide an estimation of the number of individuals in a
pack. This estimation is the basis for counting regional wolf populations which is of interest for both ecological and
economic purposes, since authorities must reimburse the cost of cattle killed by this protected species [22]. Of course,

✩ Supported by Spanish DGI Project MTM2010-18427.
∗ Corresponding author. Tel.: +34 985103343; fax: +34 985103354.

E-mail addresses: galiano@uniovi.es (G. Galiano), julian@uniovi.es (J. Velasco).

http://dx.doi.org/10.1016/j.matcom.2014.11.020
0378-4754/ c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2014.11.020&domain=pdf
http://www.elsevier.com/locate/matcom
http://dx.doi.org/10.1016/j.matcom.2014.11.020
http://www.elsevier.com/locate/matcom
mailto:galiano@uniovi.es
mailto:julian@uniovi.es
http://dx.doi.org/10.1016/j.matcom.2014.11.020


214 G. Galiano, J. Velasco / Mathematics and Computers in Simulation 118 (2015) 213–223

and despite the quality of recording devices, field recordings are usually affected for a variety of undesirable signals
which range from low amplitude broad spectrum long duration signals, like wind, to signals localized in time, like cat-
tle bells, or localized in spectrum, like car engines. Clearly, the addition of all these signals generates an unstructured
noise in the background of the wolves chorus which must be treated for a proper signal analysis.

Medical signals are another good example of this situation. Due to the electromagnetic fields created by measuring
devices, the usual low frequency signals to be acquired are contaminated by a background noise which is usually
in the same frequency band as that of the signal of interest. Therefore, fine denoising techniques must be applied to
segregate the signal of interest from the noise.

In general, the denoising procedure is not aimed to recovering a clean signal but to produce a clean time–frequency
representation of the signal which allows further analysis techniques, for instance and importantly, the instantaneous
frequency (IF) estimation. For the examples given above, IF estimation allows to count the number of different
individuals howling in the recording (each individual being identified with an IF line). We also provide an example in
which the spectrogram energy content of an ECG signal is filtered to identify an arrhythmia episode.

In [6,7,9], we used nonlinear diffusion image denoising techniques applied to the spectrogram of a sound signal,
a wolf chorus. Although, as mentioned above, execution time is not a relevant issue for this type of problems, we
found that nonlinear diffusion algorithms require a high computational time, making their use not operative in many
situations. In addition, these filters do not take advantage of the special characteristics of the image produced from the
spectrogram, i.e. they operate on the spectrogram as in any other image. In this article we show that nonlocal filters
such as Neighborhood filters [13] are computationally more efficient to deal with these images and give similar re-
sults. Moreover, we point out a relationship between the Nonlocal Means filter [3] and the Neighborhood filter which
is exclusive of their implementation on images defined through time–frequency distributions.

The outline of the article is as follows. We present in Section 2 the mathematical framework of the problem and
the filtering techniques proposed in this article for one-dimensional signal denoising. In particular, we justify our
choice of the Neighborhood filter as an inexpensive approximation to the well known Nonlocal Means filter for the
special case of spectrogram images. In Section 3, we introduce the discrete problem and deduce the corresponding
formulas for algorithm implementation. Apart from the Neighborhood filter, we consider the Yaroslavsky–SUSAN
[27,23] filter and a nonlinear diffusion filter based in the Total Variation norm [20,9], for comparison purposes. Then,
we demonstrate the performance of these filters by applying them to three noisy signals (synthetic, wolf chorus and
ECG) and give quantitative comparisons based on the Mean Square Error (MSE), and the visual inspection of the
processed spectrograms and other related magnitudes.

2. Mathematical framework

Let f ∈ L2(R) denote a one-dimensional signal and WV( f ; ·, ·) be its Wigner–Ville distribution, defined as

WV( f ; t, ω) =
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where f̄ denotes the complex conjugate of f . The Wigner–Ville distribution has received much attention for IF esti-
mation due to its excellent concentration for mono-signals and many other desirable mathematical properties, see [16].
However, it is well known that it presents high amplitude sign-varying cross-terms for multi-component signals which
make its interpretation difficult. For attenuating these interference terms several approaches have been followed,
mainly based on the smoothing of the WV by convolution with a suitable regularizing kernel. Special mention is
due to the spectrogram, which may be defined either as the energy density function of the short time Fourier transform

Gϕ( f ; t, ω) =


R

f (s)ϕ(s − t)e−iωsds, (1)

for some real, symmetric and normalized window ϕ ∈ L2(R), i.e.

Sϕ( f ; t, ω) = Gϕ( f ; t, ω)Ḡϕ( f ; t, ω), (2)

or as the convolution product of the Wigner–Ville distributions of the signal and the window

Sϕ( f ; t, ω) =


R2

WV(ϕ; t̃, ω̃)WV( f ; t − t̃, ω − ω̃)dt̃dω̃. (3)
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