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Abstract

In CO2 sequestration in deep saline aquifers, contaminant transport in subsurface, or oil or gas recovery, we often need to fore-
cast flow patterns. In the flow forecasting, subsurface characterization is an important step. To characterize subsurface properties
we establish a statistical description of the subsurface properties that are conditioned to existing dynamic (and static) data. We
use a Markov chain Monte Carlo (MCMC) algorithm in a Bayesian statistical description to reconstruct the spatial distribution of
two important subsurface properties: rock permeability and porosity. The MCMC algorithm requires repeatedly solving a set of
nonlinear partial differential equations describing displacement of fluids in porous media for different values of permeability and
porosity. The time needed for the generation of a reliable MCMC chain using the algorithm can be too long to be practical for
flow forecasting. In this paper we develop computationally fast and effective methods of generating MCMC chains in the Bayesian
framework for the subsurface characterization. Our strategy consists of constructing a family of computationally inexpensive pre-
conditioners based on simpler physics as well as on surrogate models such that the number of fine-grid simulations is drastically
reduced in the generation MCMC chains. We assess the quality of the proposed multi-physics MCMC methods by considering
Monte Carlo simulations for forecasting oil production in an oil reservoir.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Scientifically correct models based on first principles, accurate numerical simulators and state-of-the-art computers
are of utmost importance in producing reliable predictions of multiphase flows in the subsurface. However, uncertainty
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in the determination of subsurface properties, such as permeability and porosity, remains the main challenge that one
has to overcome to produce accurate predictions.

The typical situation encountered in the investigation of problems such as CO2 sequestration in saline aquifers,
contamination of subsurface, or oil recovery is that there is very little data available to characterize subsurface proper-
ties. Only sparse data is available: at well locations permeability and porosity (static data) can be measured as well as
well pressure values, production curves, and saturation or concentration values at monitoring wells (dynamic data) are
usually available. Thus, the problem of determining permeability and porosity fields from available data is not well
posed and a stochastic prediction methodology must be considered [23].

We are concerned with the development of a computationally fast and effective Bayesian framework for the charac-
terization of porous media. To characterize subsurface properties we establish a statistical description of the subsurface
properties that are conditioned to existing dynamic (and static) data. We use a Markov chain Monte Carlo (MCMC)
algorithm in a Bayesian statistical description to reconstruct the spatial distribution of rock permeability and porosity.
In this context however, acceptance or rejection criterion in the MCMC algorithm requires the calculation of likeli-
hood function that involves repeatedly solving a set of nonlinear partial differential equations describing displacement
of fluids in porous media for different values of permeability and porosity. For each proposal in the MCMC algorithm
we compare measured data with its simulated counterpart [27,11,7]. The time needed for the generation of a reliable
MCMC chain using the algorithm can be too long to be practical for the subsurface characterization.

The search of computationally efficient MCMC methods has been attracting the attention of several research
groups. Fox and Nicholls [13] employed a perturbation technique to identify proposals that are most likely to be
rejected in the posterior probability exploration. Oliver et al. [29] were perhaps among the first to apply MCMC in
the petroleum reservoir simulations to characterize uncertainty in the permeability fields conditioned to the pressure
data. The authors in [15] improved the algorithm in [29] by proposing a blocking MCMC approach in which each
proposed member of the chain is different from the previous one over an entire, relatively large, block of cells. This
blocking scheme accelerates the creation of the chain of realizations. Higdon et al. [24] presented a methodology for
improving the speed and efficiency of an MCMC by combining runs on different scales. They introduced a coarse-
scale to make the MCMC chain run faster and better explore the posterior, and linked the coarse chain back to
the original fine-scale chain of interest. In [6] a two-stage MCMC algorithm was presented for generating samples
from an unnormalized posterior distribution in which the evaluation of the posterior distribution is very difficult or
computationally demanding. The algorithm was applied to recovering resistor values in a network from electrical
measurements made at the boundary. Later in [11,12], the two-stage MCMC algorithm, which utilizes inexpensive
coarse-scale models to screen out detailed flow and transport simulations, was used to explore the posterior distribution
of the permeability field. In the first stage, a new proposal is tested at the coarse-scale model. If the proposal passes the
testing at the coarse-scale model, then at the second stage the fine-scale simulation will be run and this fine-scale run
is computationally very expensive when compared to the coarse-scale run. Vrugt et al. [32] developed a population-
based MCMC algorithm that allows for the exchange of information among multiple chains to enhance the efficiency
of MCMC sampling. Kavetski et al. [26] and Kavetski and Kuczera [25] showed that some computational complexities
can be removed by smoothing the objective function in parameter optimizations of hydrological model calibration in
accelerating the Bayesian posterior sampling. A multiple-try MCMC algorithm [34] was designed for a hydrological
and environmental simulation model by making better use of the information generated in a costly run of the model.
The authors used multiple evaluations of the posterior density in the less computationally expensive subspace of error
model parameters.

Furthermore, in the same spirit of two-stage procedures [6,11,12,17], the authors introduced a multi-stage Bayesian
prediction framework for subsurface flows in [19]. The authors described a predictive procedure in a Bayesian
framework, which uses a single-phase flow model for characterization aiming at making prediction for a two-phase
flow model. The quality of the characterization of the underlying formations was accessed through the prediction
of future fluid flow production. They also considered parallelizing the generation of MCMC chains to speed-up the
posterior exploration in [18,20]. In [18] the authors addressed this issue using several parallel MCMC chains for
flow prediction. In [20] the authors parallelized single MCMC chains using a prefetching technique implemented on
GPUs and showed that the parallelization can make the Bayesian approach computationally tractable for subsurface
characterization and prediction of porous media flows.

The original contribution of the present work is the introduction of the concept of multi-physics MCMC
(MP-MCMC) methods. In our strategy a family of computationally inexpensive preconditioners is constructed based
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