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Abstract

In a large number of physical, biological and environmental processes interfaces with high irregular geometry appear separating
media (phases) in which the heterogeneity of constituents is present. In this work the quantification of the interplay between
irregular structures and surrounding heterogeneous distributions in the plane is made

For a geometric set A ⊂ R2 and a mass distribution (measure) µ supported in S ⊂ R2, being A ⊂ S, the mass µ(A(ε)) gives
account of the interplay between the geometric structure and the surrounding distribution. A computation method is developed
for the estimation and corresponding scaling analysis of µ(A(ε)), being A a fractal plane set of Minkowski dimension D and
µ a multifractal measure produced by random multiplicative cascades. The method is applied to natural and mathematical fractal
structures in order to study the influence of both, the irregularity of the geometric structure and the heterogeneity of the distribution,
in the scaling of µ(A(ε)). Applications to the analysis and modeling of interplay of phases in environmental scenarios are given.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In a large number of scenarios of different scientific fields, objects or regions with irregular borders appear
surrounded by phases or media in which a high variability in the concentration of some constituents is a main
ingredient. Such is the case of diffusion fronts in chemical reactions [9], wetting fronts in unsaturated soil and porous
media [4,9], percolation boundaries [9], river basins [20], tumor growth [1], etc. The mass of such constituents near
the border should influence the interplay between phases and thus its estimation becomes imperative. This ubiquitous
situation where an irregular geometric structure appears surrounded by a highly heterogeneous distribution suggests
it should be modelized and handled by Fractal Geometry tools. Above stimulating objective motivated this research.
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After Mandelbrot [16], fractals have been widely used to quantify geometric irregularity in nature. Multifractality,
a concept coming from the seminal ideas given in Mandelbrot [15], much more subtle and less popular indeed,
has also been used to address heterogeneity. Thus, fractals and multifractals, have proven useful in describing and
parameterizing the irregularity of shape via the fractal dimension and the complexity of spatial distributions via the
multifractal spectrum, respectively. However, the use of both together to address the picture drawn above has only
been addressed recently [18].

Let A ⊂ R2 be a fractal set and µ a mass distribution (measure) supported in S ⊂ R2 being A ⊂ S. However
the amount of measure µ(A(ε)) surrounding A within an “small neighborhood” A(ε) = {x ∈ S : dist(A, x) < ε}

may be positive and, in such case, its relative amount respect to ε gives account of the geometric–measure interplay
between both, the set A and the distribution µ.

For uniform measures the quantity µ(A(ε)) is directly related with the geometric size of A(ε), and consequently
with the fractal dimension of A. For highly heterogeneous distributions however, as is the case of multifractal
measures, where the mass concentration (local dimension) varies widely, the estimation should depend on parameters
related to the distribution as well. Thus, which heterogeneity parameters of the distribution should be used and how
can the parameters used help evaluate the mass–geometry interplay are questions of great interest that need to be
answered by means of a precise mathematical treatment.

In Martı́n and Reyes [18] some asymptotic properties of the mass µ(A(ε)) including the fractal dimension of the
interface and the fractal dimension of the set where the mass of a surrounding multifractal distribution is concentrated,
were obtained. However such set is not, in general, a closed set becoming somewhat intangible for the practical
estimation of the measure. As a result, the effective estimation will require an adequate computer estimation method.
This paper aims to present an interdisciplinary approach for the study of these kinds of problems.

The paper is organized as follows.
First, preliminary theoretical concepts an tools are presented in an accessible way for possible readers interested in

the problem though not familiar with Fractal Geometry.
Second, the computation of the mass in different neighborhoods µ(A(ε)) of the interface is implemented and its

scaling behavior studied. This is first done for images of real river networks and later for proper fractal plane sets.
The analysis of results allows one to study the influence of both, the irregularity of the geometric structure and the
heterogeneity of the distribution, in the scaling of µ(A(ε)).

Finally several applications for the analysis and modeling of fractal river networks structures and interplay between
phases in granular and porous media are suggested.

2. Preliminary concepts

2.1. Fractal sets and dimensions

Mathematically speaking irregular fractal structures appear as sets of the Euclidean n-space Rn with intermediate
size between smooth curves and surfaces, that is, sets of non integer Hausdorff dimension.

For 0 ≤ s ≤ n, the s-dimensional Hausdorff measure of a set A ⊂ Rn is

H s(A) = lim inf
δ↓0


∞

i=1

d(Si )
s

: E ⊂

∞
i=1

Si , d(Si ) ≤ δ


.

In particular, the Hausdorff measure Hn is a constant multiple of the Lebesgue measure Ln (length, area, . . . ).
The Hausdorff dimension of a set A ⊂ Rn is defined by

dimH A = inf

s : H s(A) = 0


= sup


s : H s(A) = ∞


and indicates the level at which the measure of the set should be evaluated.

The somehow abstract concept of Hausdorff measure may be replaced by the Minkowski content which is better
understood and numerically estimated.

Recall that for 0 < ε < ∞ the closed ε-neighborhood of A is

A(ε) =


x ∈ Rn
: d(x, A) ≤ ε


.
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