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b Dep. Matemática Aplicada, University of Granada, Avenida Fuente nueva s.n., 18071, Granada, Spain

Received 18 March 2014; received in revised form 31 July 2014; accepted 20 November 2014
Available online 12 December 2014

Abstract

In this work a new kind of stochastic model is presented, the semi-hidden Markov model (SHMM). The proposed model is
related to the hidden Markov model (HMM), and it is called semi-hidden because generated sequences need less information than
HMM sequences to infer the succession of states run by the source.

The main feature of SHMM is that they work with statistical memory, i.e. the symbol’s emission probability distribution on the
current state of the emitting source depends on a number of symbols already emitted in the previous state. The proposed model is
useful for the generation and analysis of processes and symbolic sequences containing runs.
c⃝ 2014 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

A hidden Markov model (hereinafter HMM) is a powerful statistical method to characterize the observed samples
of a discrete-time series. In this model the system being modelled is assumed to be a Markov process with unobserved
(hence hidden) states.

Initially proposed by L.E. Baum and others [3,2,5,4,1] HMM are widely used in science, engineering and many
other areas like speech recognition, optical character recognition, machine translation, computer vision, finance and
economics, social sciences, etc. [12]. HMM are especially known for their application in temporal pattern recognition
such as speech, handwriting, gesture recognition, part-of-speech tagging, musical score following and bioinformat-
ics [9,8,7,10,13].

2. Hidden Markov models (HMM)

A Markov chain (a first order HMM) is a discrete-time random process which generates a sequence of symbols
with the Markov propriety: the probability of switching to any particular state only depends on the current state. Con-
sequently, in a Markov chain the state is directly visible to the observer, and therefore the state transition probabilities
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are the only parameters. In a HMM, the state is not directly visible, but only the output (dependent on the state). This
model can be seen as a double stochastic process, in which every state is characterized by two probability distributions:
a probability distribution over the possible output symbols and a probability distribution that controls the change of
state. Therefore the sequence of symbols generated by a HMM gives some information about the sequence of states,
although not all information. In this context, ‘hidden’ refers to the state sequence followed by the source, not to the
parameters of the model. In fact, even if the model parameters are known, the model still remains ‘hidden’ in the sense
that the state sequence controlling the output is, in general, unknown.

The elements of a discrete HMM are the following [12]:

• The alphabet V = {v1, . . . , vm}, with m symbols.
• The set of n hidden states S = {s1, . . . , sn}.
• The n × n left stochastic transition matrix among states A = {ai j }, 1 ≤ i, j ≤ n, 0 ≤ ai j ≤ 1,

n
i=1 ai j = 1.

• The m × n matrix of distributions of symbols’ emission probability in each state B = {bi j }, i = 1, . . . , m, j =

1, . . . , n, 0 ≤ bi j ≤ 1,
m

i=1 bi j = 1.
• The initial-state probability distribution Π = {πi }, i = 1, 2, . . . , m.

A HMM is denoted by λ = {A, B,Π }. The three fundamentals problems to solve in the field of HMM are the
following:

• Evaluation problem: given an observed sequence O = {o1, . . . , oT } and a model λ = {A, B,Π }, evaluate the
conditional probability P(O|λ) of O being generated by λ. This problem can be solved by means of the forward
algorithm [12].

• Decoding problem: given an observed sequence O = {o1, . . . , oT } and a model λ = {A, B,Π }, obtain the ‘opti-
mal’ sequence of states Q = {q1, . . . , qT } (in the sense that it best explain the observations). This problem can be
solved by means of the Viterbi algorithm [12].

• Training problem: given an observed sequence O = {o1, . . . , oT }, adjust the model parameters λ = {A, B,Π } to
maximize P(O|λ). This is a problem difficult to solve since it has no analytical solution. Some usual algorithms
to approximate the solution are Dempster [6] and Levinson [11].

3. Semi-hidden Markov models

Semi-Hidden Markov models (hereinafter SHMM) are proposed as a modification of HMM. The main feature
of this kind of models is the inclusion of statistical inertia, which allows the generation and analysis of symbolic
sequences containing runs. In this way, each new state is determined by the sequence of z last symbols generated. In
addition, the lower the value of z, the lower the number of possible states.

3.1. Formal definition of a SHMM

The elements of a discrete SHMM are the following:

• The alphabet V = {v1, . . . , vm}, with m symbols.
• The stationary probability distribution P∗

= {p∗

1, . . . , p∗
m}. It is used to compute the probability distribution of

every state.
• The length of statistical inertia z ∈ N, z ≥ 1.
• The weight of statistical inertia w ∈ R, 0 ≤ w ≤ 1.
• The probability of changing the state π ∈ R, 0 ≤ π ≤ 1.

A source driven by a given SHMM λ = {P∗, z, w, π} generates a sequence of symbols O = {o1, o2, . . . , oT }

according to the following procedure:

1. Generate z random symbols following the stationary probability distribution P = P∗, as previous symbols not
belonging to the sequence. Let F be the relative frequency distribution of these z symbols.

2. Set the initial state as the corresponding to the probability distribution

P = w · F + (1 − w) · P∗ (1)

3. Generate a symbol of the alphabet according to P and output to the sequence.
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