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Abstract

We describe numerical algorithm for the simulation of traveling wave solutions in a newly formulated drift paradox inspired
diffusive delay population model. We use method of lines to discretize the boundary value problem for the reaction-diffusion
equations and we integrate in time the resulting system of delay differential equations using the embedded pair of continuous
Runge–Kutta methods of order four and three. We advance the solution with the method of order four and the approximations
of order three are used for local error estimation. Numerical results demonstrate the robustness, efficiency, and accuracy of our
approach. Moreover, these numerical results confirm the recent theoretical results on the minimum traveling wave speed for this
model.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

Many organisms persist in their environments despite the presence of constant advection into often unfavorable
habitats. Such intriguing phenomena is referred as the “drift paradox” in ecological literature. Examples include plants
with windborn seeds, organisms in rivers and estuaries, and marine organisms with larval dispersal influenced by ocean
currents [1]. A closer look at such species growth and disperse activities reveals that various specific biological and
physical processes can contribute to the persistence of a given organism in such an environment [5,6].

There is a significant and growing interest in modeling population growths in a setting mixing advection with
diffusion [2,3,10,17]. For example, the paper by Pachepsky et al. [16] studied such a population growth with additional
assumptions that the reproduction occurs only in the stationary phase and the population can be divided into two
interacting compartments: individuals residing on the benthos and individuals drifting in the flow. They proved that
persistence of the population is guaranteed if at low population densities the local growth rate of the stationary
component of the population exceeds the rate of entry of individuals into the drift. In [11], the authors incorporated a
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maturation delay τ in the model of Pachepsky et al. [16] which yielded the following two-dimensional single-species
diffusive-delay population model⎧⎪⎪⎨⎪⎪⎩

∂nd

∂t
(x, t) =  δ nb(x,  t) −  σ  nd(x,  t) −  v

∂nd

∂x
(x, t) +  d

∂2nd

∂x2 (x,  t),

∂nb

∂t
(x,  t) =  r  nb(x,  t −  τ) − r

κ
n2

b(x,  t) −  δ  nb(x,  t) +  σ  nd(x,  t),

(1.1)

x  ∈  [a, b], t ≥  0, with initial and boundary conditions{
nd(x,  0) =  n0

d(x),  nb(x,  t) =  n0
b(x,  t),  x ∈  [a,  b],  t ∈  [−τ,  0],

nd(a,  t) =  g1(t), nd(b,  t) =  g2(t), t  ≥  0.
(1.2)

Here, nb(x, t) is the population density of the benthos, nd(x, t) is the population density of the drift, the delay τ  is
the time taken from birth to maturity, r  is the rate of the benthic population at which individuals are born, κ  is the
carrying capacity, δ  is the per capita rate at which individuals in the benthic population enter the drift, σ  is the per capita
rate at which the organism return to benthic population from drifting, d  is the diffusion coefficient, v  is the advection
speed experienced by the organisms, and n0

d(x), n0
b(x,  t), g1(t), and g2(t) are given functions. Inheriting the assumptions

proposed in [16], the diffusion term d for the drift compartment represents the effect of heterogeneous stream flows
and random individual swimming.

Model (1.1) is a cooperative delayed reaction-diffusion system. The existence of analytic solution in (1.1) with
appropriate initial and boundary conditions is ensured by the results in Martin and Smith [12]. It was established in
[11] that the model (1.1) admits traveling wave solutions. In this paper we propose a numerical algorithm for the
numerical simulations of these solutions. This method can be easily adapted to simulate other diffusive delay models
such as those studied by Gourley and Kuang [8,9].

2.  Discretization  in  space

Let be given an integer N  > 0 and consider the uniform grid xi = a  + ih, i = 0, 1, . . ., N  + 1, where (N  + 1)h  = b −  a.
Putting x  = xi, i = 1, 2 . .  . , N, into (1.1) and discretizing the partial derivative ∂nd/∂x  at the points (xi, t) by the central
differences

∂nd

∂x
(xi, t) ≈ ud(xi+1,  t) −  ud(xi−1,  t)

2h
,

and the partial derivative ∂2nd/∂x2 at the points (xi, t) by the finite differences of second order

∂2nd

∂x2 (xi, t) ≈ nd(xi+1, t) −  2 ud(xi,  t) +  ud(xi−1, t)

h2

we obtain a system of the delay differential equations of the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n′
d,i(t) =  δ  nb,i(t) −  σ nd,i(t) −  v

nd,i+1(t) −  nd,i−1(t)

2h

+ d
nd,i+1(t) −  2 ud,i(t) +  nd,i−1(t)

h2 ,

n′
b,i(t) =  r  nb,i(t  −  τ) − r

κ
n2

b,i(t) −  δ  nb,i(t) +  σ  nd,i(t),

(2.1)

i = 1, 2, .  . ., N. Here, nd,i(t) are approximations to nd(xi, t) and nb,i(t), nb,i(t  −  τ) are approximations to nb(xi, t), nb(xi,
t −  τ), respectively. For i  = 1 and i  = N  we have to incorporate into the above equations the boundary conditions from
(1.2), i.e.,

nd,0(t) ≈  nd(a,  t) =  g1(t) and nd,N+1(t) ≈  nd(b,  t) =  g2(t).
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