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Abstract

In this paper, a class of non-autonomous reaction-diffusion neural networks with time-varying delays is investigated. By estab-
lishing a new differential inequality and employing the properties of spectral radius of nonnegative matrix and diffusion operator,
the global attracting and positive invariant sets and exponential stability of non-autonomous reaction-diffusion neural networks with
time-varying delays are obtained. Our results do not require the conditions of boundedness of the coefficient of neural networks.
One example is given to illustrate the effectiveness of our conclusion.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

Recently, various neural network models have been extensively investigated and successfully applied to image
processing, signal processing, pattern classification, optimization problem, etc. In implementation of neural networks,
time delays are unavoidable due to finite switching speeds of the amplifiers and communications. The existence of time
delays may destroy a stable network and cause sustained oscillations, bifurcation or chaos and thus could be harmful.
Therefore, the stability of neural networks with delay have been studied widely (see Refs. [6,9,11,12,15,22,21,27,29]).
However, strictly speaking, diffusion effects cannot be avoided in the neural networks when electrons are moving
in asymmetric electromagnetic fields. For example, as it is well known, the multi-layer cellular neural networks are
arrays of nonlinear and simple computing elements characterized by local interactions between cells, therefore the
multi-layer cellular neural networks paradigm are well suited to describe locally interconnected simple dynamical
systems showing a lattice-like structure (see Refs. [2,3]). In other words, the whole structure and dynamic behavior
of multi-layer cellular neural networks are seriously dependent on the evolution time of each variable and its position
(space), but also intensively dependent on its interactions deriving from the space-distributed structure of the whole
networks. So, we must consider that the activations vary in space as well as in time. In recent years, various interesting
results on the stability and other behaviors of autonomous neural networks with reaction-diffusion terms have been
reported (see Refs. [14,18,19,23,31,32]).
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It is well known that the non-autonomous phenomenon often occurs in many realistic systems. Particularly, when
we consider a long-term dynamical behaviors of a system, the parameters of the system are usually subjected to
environmental disturbances and frequently vary with time. In this case, non-autonomous neural network model can
even accurately depict evolutionary processes of networks. Thus the research on the non-autonomous neural networks
is also important like on autonomous neural networks (see Refs. [7,13,16,17,20,25,26,28,30]). In [13,16,17,25,30],
authors have considered the boundedness or exponential stability for non-autonomous neural networks with delays
and reaction-diffusion terms, but the boundedness of coefficient is required, this limited the application of the neural
networks in some extent. In addition to the stability of neural networks, the attracting and invariant sets of neural
networks are also important (see Refs. [4,7,8,28]). In [28], authors have considered the attracting and invariant sets of
non-autonomous neural networks with reaction-diffusion terms, but the common factors of coefficient are required.
Motivated by this, the main purpose of this paper is to study the attracting and invariant sets of non-autonomous reaction-
diffusion neural networks with time-varying delays. In this paper, we first establish a new differential-inequality to
improve the inequalities established in [10,33]. Basing on the new differential-inequality and employing the properties
of spectral radius of nonnegative matrix and diffusion operator, without requiring the boundedness and common factors
of coefficient of neural networks, the global attracting and positive invariant sets and the sufficient conditions ensuring
the exponential stability of non-autonomous reaction-diffusion neural networks with time-varying delays are obtained.
Our results can generalize and improve the existing works.

2. Model  description  and  preliminaries

In this paper, we consider the following non-autonomous reaction-diffusion neural networks with time-varying
delays
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where i  = 1, 2, .  . ., n, and n  corresponds to the number of units in a neural network; Ω  ⊂  Rm is a bounded domain with
smooth boundary ∂Ω  and measure μ  = mesΩ  > 0; xk (k  = 1, 2, .  .  ., m) corresponds to the kth coordinate in the space;
ui(t, x) is the state of the ith unit at time t and in space x; fj(·) and gj(·) denote the activation functions of the jth unit
at time t and in space x; τij(t) is the transmission delay at time t with 0 ≤  τij(t) ≤  τ  and τ  > 0 is a constant; smooth
function Dik = Dik(t, x) ≥  0 corresponds to the transmission diffusion operator along the ith unit; ai(t) > 0 represents the
rate with which the ith unit will reset its potential to the resting state in isolation when disconnected from the network
and external inputs; bij(t), cij(t) denote the strength of the jth neuron on ith unit at time t and t  −  τij(t), respectively;
Ii(t) denote the bias of the ith unit at time t; φ(s, x) = (φ1(s, x), φ2(s, x), .  .  ., φn(s, x))T is the initial value.

Next, we introduce several notations and recall some basic definitions.

Let Rn be the space of n-dimensional real column vectors, N�={1,  2,  .  . .  ,  n},  R+
�= [0, +∞), and Rm×n denote the

set of m  ×  n  real matrices. Usually E  denotes an n  ×  n  unit matrix. For A, B  ∈  Rm×n or A, B  ∈  Rn, the notation A  ≥  B
(A > B) means that each pair of corresponding elements of A and B  satisfies the inequality “≥(>)”. Especially, A  ∈ Rm×n

is called a nonnegative matrix if A  ≥  0, and z  ∈  Rn is called a positive vector if z > 0. Let ρ(A) denote the spectral radius
of square matrix A.
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