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Abstract

The paper studies the constrained curvature flow for open planar curves with fixed endpoints by means of its numerical solution.
This law originates in the theory of phase transitions for crystalline materials and where it describes the evolution of closed
embedded curves with constant enclosed area. We show that the area is preserved for open curves with fixed endpoints as well.
Here, the area is given by the curve and its ends connected to the origin of coordinates. We provide the form of the stationary
solution towards which any other solution converges asymptotically in time. The evolution law is reformulated by means of the
direct method into the system of degenerate parabolic partial differential equations for the curve parametrization. This system is
spatially discretized by means of the flowing finite volumes method and solved numerically by the explicit Runge–Kutta solver. We
experimentally investigate the order of approximation of the scheme by means of our numerical data and by knowing the analytical
solution. We also discuss the role of the suitable tangential redistribution. For this purpose, several computational studies related to
the open curve dynamics are presented.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

In this article we focus on the non-local curvature flow for open curves in R2. Our main goal is to investigate the
flow described by the following geometric evolution law:

vΓ = −κΓ + F, where F =
1

L(Γt )


Γt

κΓ ds, (1)

Γt |t=0 = Γini , (2)
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http://dx.doi.org/10.1016/j.matcom.2016.02.004
0378-4754/ c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2016.02.004&domain=pdf
http://www.elsevier.com/locate/matcom
http://dx.doi.org/10.1016/j.matcom.2016.02.004
http://www.elsevier.com/locate/matcom
mailto:kolarmir@fjfi.cvut.cz
mailto:michal.benes@fjfi.cvut.cz
mailto:sevcovic@fmph.uniba.sk
http://dx.doi.org/10.1016/j.matcom.2016.02.004
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where Γt is a C1 smooth open curve with fixed endpoints in R2. It is evolved in the normal direction with the velocity
vΓ . The evolution starts from the initial curve Γini . Here L(Γt ) =


Γt

ds is the length of the curve Γt and κΓ is the
(mean) curvature of Γt .

In the case where Γt is a closed Jordan curve, nΓ is the outward unit normal vector and the curve is assumed to be
oriented counter-clockwise. This means, that κΓ = 1 if Γt is the unit circle. In the other cases, i.e., the case where Γt
is an open curve or a self-intersected closed curve, nΓ is chosen in such a way that det(nΓ , tΓ ) = 1 where tΓ is the
unit tangent vector to the Γt (see Section 2).

Geometric laws similar to (1) have been discussed in the literature (see [14,11,20,13]) or [18]. They belong to a
class of (mean) curvature flows described by the evolution law

vΓ = −κΓ + F, (3)

with a particular choice of the forcing term F , which is widely studied in the literature (see, e.g., [12]) The evolution
of open curves has been addressed, e.g., in [5,22] or in [23].

The global character of the forcing term F often plays its role in the constrained motion by (mean) curvature,
where the F depends on geometrical properties of Γt , like its length L(Γt ), enclosed area A(Γt ) etc. The particular
choice of F as in (1), i.e., F =


Γt
κΓ ds/L(Γt ), leads to the area preserving (mean) curvature flow, whereas

F =

Γt
κ2
Γ ds/


Γt
κΓ ds yields the length preserving (mean) curvature flow (see [30]), or, by choosing the force

as F = L(Γt )/2A(Γt ), we can investigate the isoperimetric ratio gradient flow (see [30]).
The local character of F is often observed in applications of the (mean) curvature flow in digital image processing.

Namely in image segmentation, where the force F locally depends on the intensity of the segmented image (see, e.g.,
[3,4]).

The (mean) curvature flow with a particular choice of the forcing term F found its applications in many problems
with physical context, e.g., in dislocation dynamics in crystalline materials, where F can describe either global stress
field or local interaction forces between multiple defects (see [6,22]). The constrained motion by (mean) curvature,
in particular, has been investigated in [27,17,7] within the context of a modification of the Allen–Cahn equation (see
[8,1]) approximating the (mean) curvature flow (see [2]). The non-local character of the geometric governing equation
is also connected to the recrystallization phenomena where a fixed previously melted volume of the liquid phase
solidifies again (see [19]).

Problem (3) for closed curves can be mathematically treated by the direct (parametric) method (see, e.g., [10,12,4]),
by the level set method (see, e.g., [24]) or by the phase-field method (see, e.g., [2]). In this paper, we investigate (3) by
means of the direct method as the single option for open or self-intersecting curves and solve the resulting degenerate
parabolic system numerically to provide the information on the solution behavior. For this purpose, the used numerical
scheme based on the flowing finite volume method is suggested using the previous authors’ experience. Approximation
property of this scheme is analyzed and the role of the redistribution for its stable behavior is explained. Then, several
computational examples are presented.

2. Equations

In the direct method for solving (1) one considers the parametrization of the smooth time-dependent curve Γt for
t ≥ 0 by means of the mapping

X⃗ = X⃗(t, u), u ∈ [0, 1],

where u is the parameter in a fixed interval. In the case of a closed curve, the parametrization is orientated counter-
clockwise and the periodic boundary conditions at u = 0 and u = 1 are imposed, i.e. X⃗(t, 0) = X⃗(t, 1). For
open curves with fixed ends we prescribe the Dirichlet boundary conditions for X⃗(t, u) at u = 0 and u = 1;
i.e. X⃗(t, 0) = X⃗0 and X⃗(t, 1) = X⃗1 for given positions X⃗0 and X⃗1, respectively. Consequently, the geometric
quantities of our interest can be expressed by means of the mapping X⃗ . The unit tangent and normal vectors are
given by the following formulas:

tΓ =
∂u X⃗

|∂u X⃗ |
and nΓ =

∂u X⃗⊥

|∂u X⃗ |
=

1

|∂u X⃗ |


∂u X2

−∂u X1


, where X⃗ =


X1

X2
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