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Abstract

In this paper, a discrete predator–prey system is proposed and analyzed. It is assumed that the prey population has a lower critical
point, which is also referred to as extinction threshold. Such behavior has been reported for many flowering plants, many fishes,
epidemiology, and so on. The existence and stability of nonnegative fixed points are explored. The conditions for the existence of flip
bifurcation and Hopf bifurcation are obtained by using manifold theorem and bifurcation theory. Numerical simulations, including
bifurcation diagrams, phase portraits and Maximum Lyapunov exponents, not only show the consistence with the theoretical analysis
but also exhibit other complex dynamics and certain biological phenomena. Complex dynamics include quasi-periodicity, period-
doubling bifurcations leading to chaos, chaotic bands with periodic windows, intermittent, supertransient, and so on. Simulations
suggest that appropriate growth rate can stabilize the system, but the high growth rate may destabilize the stable system into more
complex dynamics. As well, simulations suggest that the system is stable when the lower critical point parameter c  is small, but
when c  increases beyond the critical values, the system changes from quasi-period to collapses. Furthermore, the simulated results
are explained according to a biological point of view.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

Population dynamics in ecology are generally governed by discrete-time and continuous-time systems. In recent
years, the study of discrete-time biology systems has attracted extensive attentions [1,3,7,10,11,13–15,18,21–24,26,
29–36]. One important reason is that some natural populations have non-overlapping generations, thus discrete models
are more realistic than continuous ones to study these species. Another reason is that people always study population
changes by one year (mouth, week or day) in practice, thus, it is important and necessary to obtain discrete systems
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from continuous population dynamical models, by which one studies their dynamical properties [1,22,32]. Especially,
using discrete models can provide more efficient computational models for numerical simulations and these results
reveal richer dynamics of discrete models compared to continuous ones [1,7,15,22,24,30–36].

In nature, many species have their own lower critical points, which are also referred to as extinction threshold
[4,5,24]. Once the population size is below its lower critical point, the species will die out. This phenomenon is
also named in population dynamics as the negative competition effect [28]; in fisheries sciences, it is called critical
depensation [12]; and in epidemiology, its analogous is the eradication threshold, the population level of susceptible
individuals below which an infectious illness is eliminated from a population [5,8]. The lower critical point in biology
may be caused by a variety of mechanisms operating in small populations, including the difficulty in finding mates,
lessened defences against predators, and reduced foraging efficiency in social animal [19,27].

In this paper, we apply the forward Euler scheme to a predator–prey system with lower critical point for the prey
and investigate this discrete-time dynamical system. The technique is also utilized by Zhang et al. [32], Liu and Xiao
[22] and Agiza et al. [1].

First of all, we consider a Lotka–Volterra type predator–prey system [8,25]:

ẋ(t) =  r0x
(

1 − x

k

)
−  axy

ẏ(t) =  bxy  −  dy

(1)

where x(t)and y(t)denote prey and predator densities respectively, all the parameters in system (1) are positive constants.
Considering the effect of population low critical point or extinction threshold, we modify system (1) and get the

following system:

ẋ(t) =  r0x
(

1 − x

k

)
(x −  c) −  axy

ẏ(t) =  bxy  −  dy

(2)

where x(t)and y(t) represent the population densities of prey and predator. In absence of predation, the prey grows
with the term r0x

(
1 − x

k

)
(x −  c), where r0, where r0 is intrinsic growth rate, k  is the carrying capacity and c  > 0 is

the lower critical point [6,2]. The lower critical point c  is also referred to as extinction threshold [4,5,24], negative
competition effect [28] or critical depensation [12], below which the prey growth rate is negative. Obviously, according
to the biological meaning, the carrying capacity k  is greater than the lower critical point c. The predator consumes the
prey with a Holling-I functional response of ax  and contributes to its growth with bx. The parameter d  is the death rate
of the predator.

For simplicity we rewrite the system above as

ẋ(t) =  rx(k  −  x)(x  −  c) −  axy

ẏ(t) =  bxy  −  dy
(3)

where r  = r0
k

. When the carrying capacity k is fixed, the parameter r is a monotonically increasing function of r0.
If biological population has non-overlapping generation or people study population changes by a cycle, as previously

mentioned, it is necessary to obtain discrete systems from continuous population dynamical models. Then we apply
the forward Euler scheme to system (3) and obtain the following discrete system:

xn+1 =  xn  +  rxn(k  −  xn)(xn −  c) −  axnyn

yn+1 =  yn  +  bxnyn −  dyn

(4)

where the step size is one, xn and yn represent the population densities of prey and predator species respectively in
generation n.

This paper is organized as follows. In Section 2, we study the existence and stability of fixed points of system
(4). In Section 3, we give the sufficient conditions of existence for flip bifurcation and Hopf bifurcation. Numerical
simulations are presented to verify the theoretical analysis and to exhibit other complex dynamics in Section 4. Finally,
we give remarks to conclude this paper in Section 5.
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