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Abstract

This paper addresses the problem of generating unstructured meshes with fixed connectivity for large rigid body motion. The
proposed approach consists in generating a mesh in computational space for a generic configuration of the moving body. The
management of body and mesh motion is carried out in computational space using a sliding mesh paradigm. The mesh in physical
space is obtained through PDE mapping operators. Two mapping operators and two discretization techniques are implemented,
validated and compared. The overall methodology is applied to complex geometric configurations representative of engineering
applications.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

To perform unsteady flow simulations in domains with moving boundaries that incorporate the complete details of
geometry as well as flow features, numerical algorithms with great fidelity are needed. Such unsteady phenomena are
encountered in many engineering problems such as turbomachinery, oscillating airfoils, propellers and fluid–structure
interactions, and have led to the development of algorithms for simulating fluid physics, where dynamic grid generation
for both viscous and inviscid regions play a significant role. While several applications to complex 3D configurations
have been presented in the literature [11,4], these remain involved both from the numerical cost resulting from inter-
polation and from the mesh management point of view. Specifically, the problem becomes even more difficult for large
motion of bodies in close proximity or in contact.

Despite the considerable efforts addressed at this type of problems, efficiency and robustness remain critical issues.
Chimera schemes simplify the mesh management by superposition of the static and moving parts of the grids at the
expense of the cost of interpolation. Some mesh management strategies using local mesh adaptation have successfully
avoided interpolation by the use of edge swapping in both 2D [19,10] and 3D [20]. However, these approaches remain
complex to implement, especially in 3D, and even more so for meshes comprising more than one type of element.

To overcome these drawbacks, a new approach [2] has been presented based on a flow analogy where the grid cells
are advected past the moving boundaries by a fictitious potential-like fluid flow. In this approach, the mesh motion is
managed in physical space, and requires special treatment of grid cells on the boundaries, especially for bluff bodies.
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In the present paper, these difficulties are addressed by managing grid motion in computational space instead, and
mapping the grid to physical space using PDE operators. Performing the cell motion in computational space reduces
constraints which arise from the handling of mesh clustering in high curvature parts of the physical boundaries and
considerably simplifies the algorithm for moving bodies.

Minimizing or avoiding grid modifications preserves the mesh topology and validity during boundary motion and
increases the robustness of the mesh generation procedure. In addition, this approach simplifies the application of
Arbitrary Eulerian–Lagrangian (ALE) methods and the satisfaction of geometric conservation laws (GCL).

2. Mesh movement

Mesh motion strategies for time evolving domains presented in the literature can be divided in two major categories:
methods based on changing topology and methods which maintain the mesh connectivity.

Mesh changing topology approaches use different techniques such as local remeshing [11,12], mesh coarsening and
enrichment [3] swapping and merging [2,10]. However, there remain a number of critical issues relating to accuracy
and efficiency due to the interpolation schemes between consecutive time steps.

Amongst the mesh motion strategies in physical space which are based on preserving the mesh connectivity, the
most straightforward approach is the spring-analogy type of algorithm. These have been improved in [8] by adding
torsional springs for controlling the arbitrary motion of grid points. The difference between vertex and segment springs
to calculate the equilibrium edge lengths is presented in [5] and the segment spring method based on the modified
stiffness has been applied for a pitching airfoil where the original spring analogy methods had failed. However, a
disadvantage of this approach is that the grid smoothness and regularity are lost when the grid is subjected to large
motion.

Another promising method is based on the radial basis functions presented in [21] which can be used for mesh
motion while preserving the cells connectivity. An interpolation technique is used to propagate the displacement of
boundary nodes onto the interior nodes. The method can be compared with PDE-based approaches in terms of mesh
quality and efficiency for motions where the surface deformations are smooth as in fluid–structure interaction problems.
However, it is not able to deal with contact and separating boundaries.

PDE operators such as Laplace and Poisson equations have been used as a mechanism to generate and smooth
meshes. One such method is based on the linear elasticity theory. Yang and Mavriplis [27] showed how linear-elastic
smoothing can be used to perform very large deformations for inviscid and viscous meshes. One advantage of this
approach is that it uses a variable elastic stiffness, inversely proportional to the cell volume, in order to preserve the
mesh quality in viscous layers. This method has been found very robust for several engineering applications but gives
invalid cells in some large periodic motions.

The methods described so far, all share one major characteristic which is that the mesh motion is carried out in
physical space. This treatment, as described in [1], presents difficulties regarding the management of grid valence
as required for local element splitting at separation and reattachment points. Another difficulty is the nodal velocity
propagation inside the domain to avoid tangled meshes. Consequently, in the present paper, these difficulties are
addressed by managing grid motion in computational space, and then, mapping the grid to physical space using a
system of PDE operators. Managing cell movement in computational space decreases difficulties in handling physical
domain features, especially in regions where boundary curvature varies rapidly. The major goal of this approach is
to preserve the mesh topology as time evolves, making it well suited for Arbitrary Lagrangian–Eulerian (ALE) flow
solvers and allowing for the rigorous application of geometric conservation laws (GCL). It is known that the ALE
approach combines both, the Lagrangian and Eulerian reference frames and allows for a flexible, moving grid. This is
helpful in problems with large deformation of boundaries where the grid tracks the fluid or boundary. In addition, an
often overlooked issue in moving grids is the discretization of the GCL. These consist in two equations that state that
cell volumes must be bounded by their surfaces (surface conservation law, SCL) and that a volumetric increment of
a moving cell must be equal to the sum of changes along the surfaces that enclose the volume (volume conservation
law, VCL). Imposing these requirements for time dependent meshes in a finite volume method have been presented in
[28,24] and are greatly simplified in the present approach as the grid connectivity is fixed.

The proposed procedure for this method consists in three major steps. First, an unstructured mesh is generated in
computational space around a generic body. Then, the generic boundary is made to slide through the cells according to
the defined trajectory for the physical boundary, and finally, the mesh is mapped on the physical domain. The mapping
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