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Abstract

Consider a matrix valued function A(x) € R™*", m > n, smoothly depending on parameters x € 2 C R2, where Q is simply
connected and bounded. We consider a technique to locate parameter values where some of the g dominant (¢ < n) singular values
of A coalesce, in the specific case when A is large and m>n > g.
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Notation. An m x n real matrix is indicated with A € R™*". We always consider the 2-norm for vectors and
matrices. A matrix valued function A : R — R™*" continuous with its first 1 derivatives (/> 0), is indicated as
AeCl(R, R™™M). If [=0, we also simply write A€C. If A e Cl(R, R™*m) ig periodic of (minimal) period >0, we
write it as A € CZT(R, R™*"). With @ c R? we indicate an open and bounded simply connected planar region, and
x=(x1, x2) will be coordinates in €2. For a function A(x), x € Q, we will write A € C/(€2, R"™*") as appropriate.

1. Introduction

Consider a matrix A € R™*", m > n. Recall that the — reduced — SVD (Singular Value Decomposition) of A is the
decomposition

A=UxVT,

where U € R™*" is orthonormal (UTU=1,), V € R"*" is orthogonal, and ¥ € R"*" is the diagonal matrix of the singular
values: ¥ =diag(oy, ..., 0p), 01 >02>--->0,>0. The SVD of a matrix is one of the most useful decompositions
in linear algebra: the rank of A, as well as orthogonal representations for fundamental subspaces associated with A can
be nicely retrieved from the factors of the SVD; see [5].

An important application of the SVD is that it is easy to obtain from it the best approximation (in the 2-norm)
to the matrix A among matrices of a given rank. Namely, if A= USVT and oy >---> 04>0g41 >+ >0y, then

the best approximation of rank ¢ to A is given by U(‘I)E(q)(V(‘J))T, where U9 =U(:, 1:q), V@ =V(:, 1:¢q) and
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2@ =%(1:4q, 1:¢). In particular, if all singular values are distinct, the SVD at once allows to obtain the complete set
of best approximations of rank g=1, 2, ..., and associated projections. Indeed, we notice that lack of uniqueness of
the best approximation ensues when singular values coalesce. Amongst the multitude of applications where the best
approximation problem finds a use, we recall image compression [8,10,12].

Naturally, a general matrix A € R™*", is expected to have distinct singular values, in that (if not) an arbitrary small
perturbation of it will do. In fact, more is true. A fundamental result of von Neumann and Wigner, known as the n
on-crossing rule (see [14]), implies that having a pair of coalescing singular values is a co-dimension-2 phenomenon.
In other words, when we consider matrix valued functions, we should not expect a function of one parameter to have
coalescing singular values, whereas we should expect a function of 2 parameters to have coalescing singular values.

Example 1.1. Suppose we have matrices, Ay, A1, ..., Ay, corresponding to snapshots taken at different times from
0 to 7, and we build a function A(?), t € [0, T], by interpolation. Then, we should expect there being a smoothly varying
best approximation of any desired rank, in that all singular values should be distinct.

Motivated by the previous discussion, in this work we focus on the problem of locating, and accurately approximating,
coalescing points for singular values of a smooth function A depending on two parameters: A € C/(2, R"*"). We recall
(e.g., see [4,7]) that one cannot expect to have a (globally) smooth SVD in a region containing coalescing points. Also,
we emphasize that, generically, we expect to have coalescing singular values at isolated points in parameter space, and
the phenomenon should not be destroyed under perturbation (though the point x where the coalescing occurs may of
course change). A coalescing is now a bifurcation point for the best approximation problem of a certain rank (e.g., if
the 10th and 11th singular values coalesce, there is no smoothly varying best approximation of rank 10).

Example 1.2. Suppose we have a sequence of matrices, Ay, i=1,...,m,j=1, ..., n,m>n, encoding photos taken
at different latitude (x;) and longitude (x), and we build a function A(x, x) by 2-d interpolation in R:={(x],
x2):a<x; <b, c <xp <d}. Then, we should not expect to have a unique best approximation in R of rank k, for all
k=1,..., n.

Besides the best approximation problem, coalescing points of singular values (or, more simply, eigenvalues of
symmetric matrices) have several other applications; we cite here works in structural engineering [11,13], as well as
works in molecular systems [1,14,15].

In [4], we gave theoretical results on coalescing singular values of square matrix valued functions in two parameters.
Our theoretical results have been of localization type: to guarantee that inside a certain closed region there is a coalescing
point. These results lend themselves very naturally to algorithms to localize coalescing points, algorithms which we
begun studying in [3]. As it will be reviewed later on, the workhorse of these algorithms is a 1-dimensional solver
which finds a smooth SVD along a closed path; in [3] we used a solver which is very similar to the one we use in the
present work.

In this work, we continue our algorithmic study to locate coalescing points, but our emphasis here is on large (and
typically sparse) functions A, and on locating coalescing points only for the first g singular values. To fix ideas, we can
think of A € R™*" with m and n in the order of thousands, but g only on the order of tens.

A plan of the paper is as follows. In Section 2, we give theoretical results which adapt those of [4] to the present
situation. In the same section, we discuss the necessary algorithmic extensions with respect to the works [2,3], to deal
with the problem at hand. In Section 3, we show the performance of our method on a few examples.

2. Theoretical and algorithmic extensions

In this section we extend both the theoretical results of [4] and the algorithmic approaches of [2,3] which were all
based on the 1-d continuation of a complete SVD for a square valued function.

2.1. Theoretical results
We now give two results, which will be used to localize coalescing points. These results are an adaptation to the

case of rectangular matrices of results in [4] relative to the case of square matrices. The notation used is from [4], to
which we refer for further details. The first result is the extension of [4, Theorem 3.6].
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