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Abstract

This paper deals with the space mapping optimization algorithms in general and with the manifold mapping technique in particular.
The idea of such algorithms is to optimize a model with a minimum number of each objective function evaluations using a less
accurate but faster model. In this optimization procedure, fine and coarse models interact at each iteration in order to adjust themselves
in order to converge to the real optimum. The manifold mapping technique guarantees mathematically this convergence but requires
gradients of both fine and coarse model. Approximated gradients can be used for some cases but are subject to divergence. True
gradients can be obtained for many numerical model using adjoint techniques, symbolic or automatic differentiation. In this context,
we have tested several manifold mapping variants and compared their convergence in the case of real magnetic device optimization.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

The space-mapping technique [1] allows computationally expensive simulation based optimization procedures to
be speeded up through the use of approximate models. In the space mapping literature the so-called fine and coarse
models are conceived as mappings from the design space to the space of model responses. The key element is the space
mapping function. It reparametrises the coarse model domain in such a way to minimize the discrepancy between
the fine and coarse model responses. The composition of the space-mapping function and the coarse model response
defines a surrogate for the fine model. Instead of solving the fine model problem directly, space-mapping solves the
surrogate optimization problem through a sequence of approximations of the space-mapping function. This in turn
defines a sequence of coarse model optimization problems whose solution by definition converges to the space-mapping
solution. The computational efficiency of this procedure stems from the fact that it takes less fine model evaluations to
converge than it takes to solve the fine model optimization problem. The drawback is that the space-mapping solution
does not necessarily coincide with the fine model optimum.

In the manifold-mapping technique [6], the surrogate model is constructed in such a way that in a neighbourhood of
the fine model optimum, the surrogate model response closely resembles its fine model counterpart. This guarantees that
the solutions of the surrogate and fine model optimization problem do coincide. The space-mapping function is replaced
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by the so-called manifold-mapping function. The latter is an affine transformation between the tangent manifolds of
the fine and coarse model image spaces. Manifold-mapping is computationally as efficient as space-mapping.

Space mapping techniques have been used in electromagnetic device optimization for several years now
[3,7,8,12,14]. Different techniques can be used, but manifold mapping, which is the only one proved to converge
to the fine model optimum is always using approximated gradients of the fine model since true gradients are not always
available.

This paper details the manifold mapping technique and argues that exact gradients can be available more or less
easily nowadays. The computational cost of these gradients is generally small compared with that of the fine model,
and the convergence of the manifold mapping algorithm is improved. This property will be required in the future when
optimization specifications becomes more and more constrained.

2.  Manifold  mapping  algorithm

2.1.  Mathematical  background

Let us consider an optimization problem with design variables x  in the design space x  ∈  X  ⊂  �n and specifications
y ∈  �m which can be approximated by minimizing a cost functional F (x) ∈  �  (e.g. Eq. (4)).

The manifold-mapping function S  : c(X) �→  f  (X) is a mapping between the coarse model c(X) ⊂  �m and fine
model f  (X) ⊂  �m image spaces. This function maps the point c(x∗

f ) to f (x∗
f ) and the coarse model tangent space

at c(x∗
f ) to the fine model tangent space at f  (x∗

f ). It allows to define the surrogate model S(c(x)) and to write the
manifold-mapping solution as follows:

find x∗
mm ∈  X  such that

x∗
mm =  arg  min

z ∈ X

||S(c(z)) −  y|| (1)

The manifold-mapping function S(x) is approximated by a sequence {Sk(x)}k≥1 yielding a sequence of iterands{
xk,mm

}
k≥1 converging to x∗

mm. The individual iterands are defined by coarse model optimization:

find x∗
k,mm ∈ X  such that

x∗
k,mm =  arg  min

z ∈ X

||Sk(c(z)) −  y|| (2)

At each iteration k, the construction of Sk is based on tangent planes of coarse and fine model, i.e., Sk =  Jc(x∗
k) · J+

f (x∗
k)

where the matrices Jc(x∗
k) and J+

f (x∗
k) of size m  ×  n  are the Jacobian of c(xk), and pseudo inverse of the Jacobian of

f(xk), respectively. The pseudo inverse can be computed by a simple QR decomposition or using the singular value
decomposition.

If the Jacobians are not available, Sk can be approximated using �C  and �F  of size m  ×  min(k, n) defined as follows:

�C  =  [c(xk) −  c(xk−1),  c(xk) −  c(xk−2),  .  . . , c(xk) −  c(xmax(k−n,0))]

�F =  [f  (xk) −  f  (xk−1),  f  (xk) −  f  (xk−2),  . .  . , f  (xk) −  f (xmax(k−n,0))]

During the first n iterations, these matrices are not fully describing the tangent planes but are enough to define a
search direction until k  becomes greater than n.

In order to improve robustness of the approximation Sk is defined with a complementary term Sk =  �C(x∗
k) ·

�F+(x∗
k) +  (I  −  Uk,cU

T
k,c) where Uk,c is provided by the singular value decomposition of �C  =  Uc · Σc · VT

c at each
k iteration.

Using Sk mapping function, an update objective yk =  c(xk) −  Sk(f  (xk) −  y) can be introduced leading to an
asymptotically equivalent problem:

find x∗
k,mm ∈ X  such that

x∗
k,mm =  arg min

z ∈ X

||c(z) −  yk|| (3)
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