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Abstract

The method of balanced domain decomposition by constraints is an iterative algorithm for numerical solution of partial differential
equations which exploits a non-overlapping partition of a domain. As an essential part of each step, restricted problems are solved
on every subdomain and a certain coarse grid solution is found. In this paper we present a new strategy of preconditioning of the
coarse problem. This is based on the algebraic multilevel preconditioning technique. We present numerical estimates of constants
defining the condition numbers of the preconditioned coarse problems for several two- and three-dimensional elliptic equations.
© 2011 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

Decomposition of domains and multilevel methods together with their parallel implementations have become a
powerful tool for solving partial differential equations discretized by the finite element (FE) method. In this paper we
consider one of these strategies applied to the second order elliptic equations. It is the method of balanced domain
decomposition by constraints (BDDC), see for example [5,8–10,12,13]. A domain where the problem is defined is
partitioned into non-overlapping subdomains. As the main part of each iteration, restricted problems on every subdomain
and a certain coarse grid problem have to be solved. Base functions for the coarse problem have minimal energy on
every subdomain and satisfy certain continuity conditions on the interfaces of subdomains, the so called coarse degrees
of freedom (DOF). The basic notation and description of the BDDC algorithm are shown in Section 2.

As the coarse DOFs, some nodal values on interfaces of subdomains are usually chosen, the number of which is
proportional to the number of subdomains. The coarse problem itself can be large and often is a bottleneck of the BDDC
computation [9]. Thus an appropriate preconditioning is desired. In paper [9] the authors describe a multilevel BDDC
algorithm, where the coarse problem is treated in a similar manner as the original one in the sense that the subdomains
are agglomerated into greater sets in the same way as the elements are collected into subdomains. An arbitrary level of
agglomeration can be reached by repeating this process. In this paper we suggest a different kind of preconditioning of
the coarse problem. We exploit the algebraic multilevel (AML) preconditioning technique. See for example [1] for its
description. This is based on a splitting of the space of the base functions into a direct sum of two subspaces. The aim is
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to find such a splitting that the strengthened Cauchy–Buniakowski–Schwarz (CBS) inequality for these two subspaces
and for the energy scalar product is valid with a constant less than one. The CBS constant determines the efficiency of
the preconditioning. Up to now, the estimates for many kinds of conforming and nonconforming FEs, and for various
elliptic operators have been derived [2,3,6,11]. The appropriate AML splittings correspond either to hierarchical bases
or to aggregations and differences of FE base functions. In Section 3, we recall the standard AML preconditioning
approach. We introduce a theorem which generalizes this strategy for the splitting into more than two subspaces.

In Section 4 the AML preconditioning is applied to the coarse problem in the BDDC algorithm. We exploit two
kinds of the coarse DOFs and suggest several kinds of splittings of the coarse spaces into two subspaces. This idea
is new. We would like to stress that a variety of coarse DOFs (nodal values, averages over faces or over edges, etc.)
can be studied together with appropriate AML splittings. In this paper we introduce only some of them. We provide
numerical estimates of the constants in the corresponding strengthened CBS inequality. Moreover, it appears that
in some auspicious cases, the coarse space of BDDC can be split into more than two subspaces which are almost
pairwise orthogonal with respect to the energy scalar product. This leads to another efficient preconditioning, which is
a generalization of the AML principle. Numerical estimates of the parameters of the splitting into either two or more
than two subspaces for several two- and three-dimensional problems are presented at the end of Section 4.

2. The  BDDC  method

We consider a weak formulation of an elliptic problem of the second order defined on a domain Ω  with either
Dirichlet or Dirichlet and Neumann boundary conditions. The FE discretization reads to find u ∈  V  such that

a(u, v) =  f  (v),  v ∈  V,  (1)

where V  is the space generated by FE base functions. We will denote the functions of V  and vectors of their coefficients
with respect to the base functions with the same letter.

Let Ω  be partitioned into subdomains Ωi, i = 1, . .  ., n. Evaluating the formulae a(u,  v) and f (v) over the individual
subdomains leads to n  separate problems, some of them indefinite. We assign subscripts to the FE base functions on
all separated subdomains Ωi and to corresponding DOFs according to locations of the corresponding nodes in the
following manner. Subscript o  is connected with internal nodes of the subdomains. Subscript c  means coarse nodes.
They lie on interfaces of subdomains and define coarse DOFs. Remaining nodes on interfaces of all subdomains have
subscript r.

After the appropriate numbering the nodes and after the assembling the blocks according to individual subdomains,
we get a matrix of the system of algebraic equations of (1) in the form

K =

⎛
⎜⎝

Ko Kor Koc

KT
or Kr Krc

KT
oc KT

rc Kc

⎞
⎟⎠ (2)

and a right hand side b. Submatrix Ko is block diagonal and positive definite. Its dimension equals to the number
of all internal nodes. Matrix Kc is positive definite and its dimension equals to the number of coarse DOFs. Matrix
Kr is positive definite and block diagonal and its dimension is greater than the number of nodes on interfaces. More
precisely, each interface DOF gives rise to several rows and columns of Kr depending on how many subdomains the
node belongs to. Of course, the choice of the coarse DOFs must preserve nonsingularity of Kr and thus of K.

Eliminating the lower part in the first block column in K  we get the Schur complement matrix

S =
(
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)
=
(
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)
−
(

KT
or
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)
K−1

o ( Kor Koc ).

This allows to reduce the size of the problem and to consider only the unknowns associated with the interface nodes.
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