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Abstract

In this paper, we deal with the global dynamics of a two-strain flu model with delay. Using the method of Lyapunov functional,
we show that if the basic reproduction number is less than one, then both strains die out; but when the number is larger than
one, one or both of the strains become endemic. The main results are confirmed by some numerical simulations. The theoretical
results obtained here provide some useful information on the impact of the vaccination rate of a single vaccine for one strain on the
dynamics of the two strains.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Influenza, commonly called the flu, is an infectious disease caused by RNA viruses of the family Orthomyxoviridae,
the influenza viruses. It spreads around the world in seasonal epidemics, resulting in about three to five million
yearly cases of severe illness and about 250,000 to 500,000 yearly deaths, rising to millions in some pandemic
years [16]. Since it causes public-health problems, there is an essential need for more information on understanding
the transmission mechanism and control strategies [1,12]. Among various controlling infectious diseases strategies
such as vaccination, isolation and the use of treatments, vaccination is considered to be one of the most effective
methods. However, vaccines can cause the immune system to react as if the body were actually being infected, and
general infection symptoms can appear [2,13,14]. On the other hand, when a virus mutates and resistant strains appear
in a population, implementing a vaccine for one strain may affect the spread of other strains [4,16].

It is widely agreed that mathematical modeling is an effective tool for developing strategies to control possible
outbreaks of diseases. To investigate such an effect of the vaccination of the current strain towards the newer strain,
Rahman and Zou [13] recently developed a two-strain model and studied the effects of a single-strain vaccine on the
dynamics of this two-strain model, which follows from the work of Castillo-Chavez et al. [3]. Here we shall briefly
review the model proposed by Rahman and Zou [13]. We assume that a type of influenza virus, called strain 1, which
is moderate in virulence, prevails in the population and a vaccine is available for this strain. A new strain, called
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strain 2, which is antigenically far related to the existing subtype and which has severe virulence effect, suddenly
appears in the same host population. Substantial time is required to produce a safe and effective vaccine for the newer
strain, and there is no pre-existing immunity in the population. To model the disease dynamics in such a scenario,
we divide the total population N into five compartments: S-susceptible individuals; V -immunized individuals with
the vaccination for strain 1; I1-infected individuals with strain 1; I2-infected individuals with strain 2; R-recovered
individuals. That is, N = S + V + I1 + I2 + R. Here, for simplicity, as in [13], we assume that there is a constant
recruitment into susceptible class through birth and/or immigration, and we assume that there is no double infection.
Susceptible individuals are vaccinated with constant rate r for strain 1, and are infected by strains 1 and 2 with
transmission coefficients β1 and β2, respectively. The vaccinated individuals (V ) can also be infected by strain 2 at
the rate of k. Once recovered from either strain 1 or 2, an individual remains in recovery class for good. The model
introduces the following parameters: Λ-recruitment of individuals; µ-natural mortality rate; ri (i = 1, 2)-recovery rate
for infected individuals with stain 1, stain 2, vi i = 1, 2 infection-induced death rate of stain 1, stain 2. All parameters
are assumed positive. With the above assumptions, the disease dynamics is described by the following system of
ordinary differential equations [13]

Ṡ = Λ − (β1 I1 + β2 I2 + λ)S,

V̇ = r S − (µ + k I2)V,

İ1 = β1 I1S − α1 I1,

İ2 = β2 I2S + k I2V − α2 I2,

Ṙ = r1 I1 + r2 I2 − µR,

(1.1)

where λ = r +µ, α1 = r1 +ν1 +µ and α2 = r2 +ν2 +µ. The readers are referred to [13] for the precise interpretation
of the biological implication of (1.1).

Since the last equation of system (1.1) is independent of the other equations, Rahman and Zou [13] analyzed the
global dynamics of the model (1.1) without the last equation for R in system (1.1). In particular, they showed that if
the basic reproduction number is less than one, then both strains die out; but when the number is large than one, one
or both of the strains become endemic depending on the parameter values.

It is well known that time delay should be and has been incorporated into many realistic models in applications [8].
Furthermore, as pointed in [13], it is worthwhile to consider the effect of time delay on vaccine-induced immunity. In
fact, there always exists an intracellular phase of the viral life-cycle, defined as the time between infection of strain 1
(or 2) and production of new virus particles. Hence, the study of the effect of time delay on vaccine-induced immunity
is an important research topic. In this paper, we present a mathematical model to describe the dynamics of a two-strain
flu model with delay along the lines of [3,13], and to investigate the parameters to show how they affect on the
infectious disease transmission.

This paper is organized as follows. In Section 2, we formulate a two-strain flu model with delay based on those in
[3,13]. Also, the basic properties are discussed in the section. In Section 3, using the method of Lyapunov functional,
we study the global stability of the model. Section 4 provides some numeric simulations to illustrate our main
theoretical results. The paper ends with a brief remarks.

2. A two-strain flu model with delay and the basic properties

The model we present in this paper is a straightforward modification of (1.1) by incorporating two time delays.
Here we assume that the flu virus production occurs after the flu virus entry by the positive constant delays τ1, τ2. The
productions of I1 (I2) at time t is given by the number of newly infected susceptible and infected individuals at time
t − τ1 (t − τ2), who are still alive at time t . Since we assume the natural mortality rate of the individuals is µ, the
probability of surviving the time period from t − τi to t is e−µτi , i = 1, 2. Based on system (1.1), the dynamics of
such a two-strain flu model with two delays is thus described by the following delay differential system

Ṡ(t) = Λ − (β1 I1(t) + β2 I2(t) + λ)S(t),
V̇ (t) = r S(t) − (µ + k I2(t))V (t),
İ1(t) = β1e−µτ1 I1(t − τ1)S(t − τ1) − α1 I1(t),
İ2(t) = β2e−µτ2 I2(t − τ2)S(t − τ2) + ke−µτ2 I2(t − τ2)V (t − τ2) − α2 I2(t),
Ṙ(t) = r1 I1(t) + r2 I2(t) − µR(t).

(2.1)

Here, all of the parameters in system (2.1) are assumed positive.
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