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Abstract

In previous works we developed a method to improve both the accuracy and computational efficiency of a given finite difference
scheme used to simulate a geophysical flow. The resulting modified scheme is at least as accurate as the original, has the same time
step, and often uses the same spatial stencil. However, in certain parameter regimes it is higher order. In this paper we apply the
method to more realistic settings. Specifically, we apply the method to the Navier–Stokes equations and to a sea breeze model.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Many have argued the use of higher-order finite difference schemes in geophysical flows is a more efficient
way to increase the accuracy/dynamical properties than an increase in the spatial grid resolution [3,5,7,10,9,15,16].
Henshaw and coauthors, in [5] and related papers, have shown the advantage of higher-order transport methods for
the Navier–Stokes equations for flows over simple topography, identifying fourth-order accuracy as particularly
advantageous. Iskandarani et al., [7], have come to similar conclusions for more oceanographically-relevant
topographic configurations using a spectral element approach. Of course traditional higher-order schemes require
wider spatial stencils which can complicate the approximations near a physical boundary, complicate the
implementation of an implicit scheme, and in some cases increase the minimum size time step required for stability
of an explicit scheme. These obstacles have led to the construction of compact difference and well-balanced schemes;
In the current context see [1,6,11,13] and the references therein. Compact difference schemes are quite general and
apply in many applications. They also require the inversion of tridiagonal matrices. Well-balanced schemes are highly
specific to a given problem and specific balance.

The higher-order finite difference schemes proposed here are in some sense a blend of well-balanced and compact
schemes. Technically we do not introduce new schemes—only a way of modifying a given scheme to make it higher
order in certain parameter regimes. The procedure is particularly effective for geophysical flows where a balance not
involving the time derivative occurs. The higher-order scheme is constructed by modifying the truncation error of the
original finite difference scheme. Specifically, the form of the governing equations at steady state is used to replace
higher-order derivatives in the truncation error with low-order derivatives.
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The procedure for modifying the truncation error has successfully been applied to many finite difference schemes
including approximations to the shallow-water equations and transport equations, [8,10,9,15]. In each case the extra
cost, in appropriate parameter spaces, required to modify the truncation error is more than compensated by the increase
in accuracy. The process leaves stability properties as well as conserved quantities of the original scheme unchanged;
In many cases the modified scheme resides on the same spatial stencil, or else it allows flexibility in choosing the
terms that reside on larger stencils; Moreover, in some cases the modified scheme is sign preserving for all parameter
values, even when the original scheme is not. Finally, while we have no proof the modified scheme is never less
accurate than the scheme from which it is derived, our experience indicates that the modifications do no harm to the
starting scheme.

The implementation of the method is highly specific to the problem and finite difference scheme to which it is
applied. In this paper we advance the method closer to realistic settings by applying the idea to the two-dimensional
Navier–Stokes equations and to a sea breeze model. Accommodating the non local properties of the Navier–Stokes
equations presents some challenges not encountered in our previous work. Moreover, the generality in which the
method is applied should make it possible to extend it to intermediate models (geostrophic approximations), and the
three-dimensional Navier–Stokes and related equations.

2. Burgers’ equation

To modify a given finite difference scheme approximating a PDE, we first compute the truncation error—the
error made by replacing continuous derivatives with discrete differences. As a result of using Taylor’s theorem, the
truncation error contains derivatives of higher order than present in the original PDE. To make a given scheme more
accurate, some of these terms must be eliminated. Since in many geophysical flows, the time derivative is not the
dominant term (the fluid is geostrophically balanced, hydrostatically balanced. . . ), we use the PDE at steady state to
replace higher-order derivatives with lower-order derivatives. The result yields a higher-order scheme on the same
mesh as the original finite difference scheme.

To illustrate the basic concept of the procedure consider Burgers equation

∂u

∂t
− λuxx + uux = f, 0 < x < L , t > 0,

u(0, t) = 0 = u(L , t), t > 0.

The constant λ is positive. We assume a uniform spatial grid of width 1x , and to shorten the exposition, we employ
the notation

δxx ui =
1

1x2 (ui+1 − 2ui + ui−1), δx ui =
1

21x
(ui+1 − ui−1).

Suppose we are given the second-order scheme, differenced in conservative flux form

dui

dt
− λδxx ui +

u2
i+1 − u2

i−1

41x
= fi , 1 ≤ i ≤ N − 1,

where N is given. The numbers ui approximate the nodal values of the solution to Burgers equation at xi = i L/N =

i1x . Moreover, we leave the time derivative continuous since the specific time integrator used is not important—we
are only modifying the spatial truncation error. Temporal errors are assumed to be small.

We want to make the scheme higher order without making the scheme less accurate, affecting the time step for
stability, or widening the stencil. To be more consistent with parameters in a geophysical setting, we suppose the
viscous term is small compared to the other terms and consequently ignore it in the truncation analysis. Thus the
starting scheme leads to
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