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Multiscale cell-based coarsening for discontinuous problems
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Abstract

Whether tracking the eye of a storm, the leading edge of a wildfire, or the front of a chemical reaction, one finds that significant
change occurs at the thin edge of an advancing line. The tracking of such change-fronts comes in myriad forms with a wide variety of
applications expressible as PDEs. Expanding on Ami Harten’s ideas, we construct an alternative to wavelet-based grid refinement,
a multiresolution coarsening method that is capable of capturing sharp gradients across different scales, thus improving PDE-based
simulations by concentrating computational resources where the solution varies sharply. We present this alternative grid coarsening
method and compare its performance to other multiresolution methods by means of several examples.
© 2007 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

There are many adaptive wavelet-based PDE methods [3,8–10,19,21,25]. Our alternative method, an expansion of
Ami Harten’s generalized wavelets [18], yields a multiresolution coarsening procedure that captures sharp gradients
across different scales and improves PDE-based simulations by concentrating computational nodes where the solution
changes abruptly. Our method has also proved useful in flagging points near jumps that would benefit from adaptive
stencil selection strategies, such as those proposed by Harten and Osher [20,23]. In the present paper, we use a linear
version of Harten’s multiresolution analysis [1,30] to construct a multilevel based front tracking scheme. This scheme,
dubbed the Multilevel Front Tracking method, or MFT, works via detail coefficient thresholding [15]. These detail
coefficients are used to adapt the grid near the jump condition, thereby providing a coarser version that captures
the essential features of the original solution. Our MFT grid coarsening scheme thus provides accurate derivative
information to solve PDEs with discontinuous solutions. The goal of the present project is to provide an adaptive
computational platform based on generalized multiresolution analysis that is able to discretize a PDE, refine the
solution and solve the resulting linear system all under one unified framework.

Section 2 introduces Harten’s multiresolution analysis and proceeds to a detailed description of our MFT method’s
discontinuity localization strategy in Section 3. Sections 4 and 5, respectively, cover the localization of jumps after the
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tiling of the computational domain and the development of the multilevel front tracking method. Finally, in Section
6, our MFT method is compared with other multilevel methods both as a coarsening strategy and later as an adaptive
PDE solver. We end with a short summary and discussion of our development road map in Section 7.

2. Multiresolution analysis

Multiresolution schemes are a natural framework by which to locate fast transitions across multiple scales. Wavelets
[11,15,24,31] and their Lifted extensions [13,22,32,33] form the basis for many multiresolution schemes. In addition
to these, there are nonlinear counterparts to Lifting [6,7,16,17,26] and adaptive stencil selection methods, such as those
first proposed by Harten [18] and later extended by Aràndiga and Donat [1] and Schröder-Pander et. al. [30]. We use
these extensions to construct a cell-based coarsening method, and what follows is a short introduction to Harten’s
multiresolution analysis.

Suppose that we have a space of functionsF ⊂ {f |f : Ω ⊂ Rm → R}, where Ω is a bounded region, and that ∀f ∈F
there is a discretization operator Dk : F → Vk, where Vk is a finite linear space with dimension k. The objective is
to design a multiresolution scheme specifically adapted to sequences obtained from Dk. This is achieved through the
introduction of reconstruction operatorsRk : Vk → F. The operators,D andR, can be constructed to provide different
resolution details

(2.1)

where dim(Vk−1) < dim(Vk).
Given Vk and Vk−1, a decimation operator is defined Dk−1

k : Vk → Vk−1, which lowers the resolution level from
k to k − 1. Inverting the process, a prediction operator Pk

k−1 : Vk−1 → Vk increases the resolution from k − 1 to k.
Therefore, the multiresolution framework

(2.2)

acts on a sequence vk ∈ Vk constructed by a discretization process vk = Dkf at resolution level k, and by definition,
Dk−1

k (Dkf ) = Dk−1 f , so Dk−1
k = Dk−1 Rk. However, the sequence is nested, Dkf = 0 ⇒ Dk−1f = 0, ∀f ∈F, so

Dk−1
k cannot depend on the reconstruction operator Rk; thus, Dk−1

k is linear. Furthermore, the prediction operator Pk
k−1

is the right-inverse of Dk−1
k and so Pk

k−1 = DkRk−1.

Using this framework, vk ∈ Vk can be approximated via the information content at level k − 1, i.e., Pk
k−1D

k−1
k :

Vk → Vk, and errors in the approximation can be computed by ek = (IVk − Pk
k−1D

k−1
k )vk. This constructs a one-

to-one correspondence between vk and [ek, vk−1], but ek is in the null space of Dk−1
k , because Dk−1

k ek = Dk−1
k vk −

(Dk−1
k Pk

k−1)vk−1 = 0. As a consequence, expressing ek in terms of a basis in Vk results in redundant information.

However, this redundant information can be discarded by projecting onto N(Dk−1
k ) and expressing the prediction

error as ek = ∑
jd

k
j μk

j ≡ Ekd
k, where μk

j spans N(Dk−1
k ). Defining the assignment operator Gk as EkGk = IN(Dk−1

k
)

results in a less redundant correspondence between vk and [dk, vk−1], where the detail coefficients dk = Gkek are
the projection errors expressed by any basis of N(Dk−1

k ). In other words, dk represents the information at level k that
cannot be predicted by Pk

k−1 at level k − 1. The pyramid scheme,

(2.3)

expands this two-level scheme to multiple resolution levels; refer to [1,30] for further details. In Section 4, we develop
a coarsening strategy for mesh refinement based on dk as a variational measure of f at scale k, but first, the jump-points
must be localized.
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