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Abstract

In this paper, different mechanisms are used to suppress the chaos in a food chain model. The control is applied to the chaotic
system so as the controlled system admits a stable attractor which may be an equilibrium point or a limit cycle. The bounded
feedback is used to achieve the stabilization of unstable fixed point of the uncontrolled chaotic system. Delayed feedback control
is used to control the chaos to periodic orbits. Numerical results substantiate the analytical findings.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Controlling chaos is a focal issue in the nonlinear problems ranging from physics and chemistry to biology and
economics. Chaos control concept has come to mean the stabilization of unstable periodic orbits (including unstable
equilibria) of dynamical systems. In a broader sense, controlling chaos can be understood as a process or mechanism
which enhances existing chaos or creates chaos in a dynamical system when it is useful or beneficial. The control of
chaos involves eliminating and weakening of chaos when it is undesirable and harmful. In such cases, it is usually a
process of stabilizing unstable periodic orbits or reducing the leading positive Lyapunov exponent of the dynamical
chaotic system, [6].

The food chains and food webs consist of three or more species have all the ingredients for the occurrence of chaos.
This has motivated several investigators to look for chaotic dynamics in ecosystem, [9,14,26,32]. However, the eco-
logical systems are robust which can withstand the perturbations of the natural habitats. In contrast, the chaotic system
is unpredictable and sensitive to initial conditions. Chaos is frequently discussed in ecological models but rarely ob-
served in natural population. It is also observed that the chaotically fluctuating population is prone to extinction, with
consequence that group selection acts to eliminate species and chaos disappears [23]. It is desirable to exert suitable
control to stabilize the unstable attractor. In physical and engineering systems, a lot of work has been carried out in
chaos control. With reference to ecological system, very little has been done so far [4,27].
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Naji and Balasim investigated three species food chain model with Beddington–DeAngelis functional re-
sponse [18]. They exhibited chaotic dynamics for realistic and biologically feasible parameters values. They also
observed that adding small amount of constant immigration to prey species stabilize the system. In another inves-
tigation, three species food chain model with Crowley–Martin type functional response is taken [29]. The results
showed that the system exhibited rich complexity features such as stable, periodic and chaotic dynamics, from the
theoretical and numerical responses. Three-species food chain model with Beddington–DeAngelis nonlinear func-
tional response has been investigated as well [33]. This paper demonstrates the presence of chaos through strange
attractor and computation of the largest Lyapunov exponent. Multi-species food chain model have also been studied
extensively and literature [9,11,13,17,20] has shown such models exhibit chaotic behavior under a Holling-type or
Beddington–DeAngelis non-linear functional response [1,3,12,30,31].

The control strategy may be manmade or influenced by nature/surroundings. The inclusion of additional predator
may control the chaos in Hastings Powell food chain, [10]. Control mechanism can be applied externally as in case of
harvesting or stocking of species, [15,16]. For chaos control, two categories of control mechanisms are used: feedback
and non-feedback. The feedback methods, (see [5,21,25]) are primarily devised to control chaos by stabilizing a
desired unstable periodic orbit embedded in a chaotic attractor. The non-feedback methods, (see [19,24]) suppress
chaotic orbits by converting the system dynamics to a periodic orbit. A bounded feedback method (see [7]) preserves
the steady states of the original system. It vanishes after stabilization is achieved.

The delayed feedback control method is given by, Pyragas (see [22]) to control chaos in continuous dynamical
system. An advantage of this approach is that it does not require any other control force input, nor access to system
parameters. Also, it may not need to exactly calculate the target trajectory. The DFC method allows one to stabilize
unstable periodic orbits of a strange attracted over a large range of parameters. In this paper, another method of control
based on DFC method: approximated delayed feed back method is proposed. The controlled system is converged to a
small periodic orbit.

2. System of coupled dynamics

Let X (t ′) be the population density of prey at the lowest level of a tri trophic food chain at time t ′. Let Y (t ′) and
Z(t ′) be the population densities of intermediate and top predators at middle and highest trophic levels respectively.
The dynamics of three species food chain model with Beddington–DeAngelis type of functional response is governed
by the system of differential equations, Naji and Balasim [18]:
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The model parameters R, K , Ai , Bi , Ci , Di and Ei , i = 1, 2 assume only positive values and are defined as follows:

R is the intrinsic growth rate and K is the carrying capacity of the prey species. The constants Di (i = 1, 2) describe
the loss of predator population in absence of food. The predator Y consumes the prey X with functional response
F1(X, Y ), while predator Z preys upon Y according to functional response F2(Y, Z). The model considers the
Beddington–DeAngelis type of functional response. The constants Ai , Bi and Ci are functional response parameters.
The constants E1, E2 are conversion rates of prey into predator for species Y and Z respectively.

The model (1) has 12 parameters which are reduced to 8 by introducing the following non-dimensional variables and
parameters:
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