

MATHEMATICS AND COMPUTERS IN SIMULATION

Mathematics and Computers in Simulation 79 (2008) 716-727

www.elsevier.com/locate/matcom

A least-squares method with direct minimization for the solution of the breakage—coalescence population balance equation

Zhengjie Zhu ^a, C.A. Dorao ^b, H.A. Jakobsen ^{a,*}

^a Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
^b SINTEF Material and Chemistry, N-7465 Trondheim, Norway

Received 20 April 2007; received in revised form 17 April 2008; accepted 16 May 2008 Available online 28 May 2008

Abstract

A least-squares method with a direct minimization algorithm is introduced to solve the non-linear population balance equation that consists of both breakage and coalescence terms. The least-squares solver, direct minimization solver together with a finite difference solver are implemented for comparisons. It is shown that the coalescence term introduces a strong non-linear behavior which can affect the robustness of the numerical solvers. In the comparison with the least-squares method, the direct minimization method is proved to be capable of producing equally accurate results, while its formulation is better conditioned. In the case of a non-linear population balance equation system, the direct minimization method converges faster than the standard least-squares method.

© 2008 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Population balance equation; Least-squares method; Direct minimization; QR decomposition

1. Introduction

The population balance is a widely used tool in engineering, with applications including crystallisation, pharmaceutical manufacture, pollutant formation in flames and growth of microbial and cell populations. A general population balance equation (PBE) consists of terms such as breakage, coalescence, growth and transport. Bubble breakage depends on the balance between external stresses that disrupt the bubble and surface/viscous stresses that resist the bubble deformation [6]. Coalescence may result from velocity difference in gas—liquid and liquid—liquid systems, and from surface properties of the particles in solid—liquid and solid—gas system [6].

In practical chemical processes, bubbles/droplets can pass through regimes where subsets of the population balance terms are dominant [3]. In general, the bubble coalescence is more complex than the bubble breakage since it involves the interaction between two bubbles and the intervening liquid film from the continuous phase [6]. Numerically, the coalescence term in the PBE is non-linear and could result in a complex convergence behavior.

Using the population balance model the dispersed phase is commonly treated using a density function, DF, which is a function of time, property and spatial position. Solution of the density function is necessary to determine the properties

^{*} Corresponding author. Tel.: +47 7359 5728; fax: +47 7359 4080.

E-mail addresses: zhengjie.zhu@chemeng.ntnu.no (Z. Zhu), carlos.dorao@sintef.no (C.A. Dorao), hugo.jakobsen@chemeng.ntnu.no (H.A. Jakobsen).

Nomenclature

- \mathcal{A} bilinear operator
- b breakage function
- $b_{\rm c}$ equivalent coalescence rate
- \mathcal{B} total rate of breakage
- coalescence function c
- \mathcal{C} total rate of coalescence
- C_1, C_2 constants
- function, distribution function f
- nodal value f_l
- solution in X_N space f_N
- \mathcal{F} continuous linear operator
- source term g
- Gproblem definition function
- redistribution function h
- \mathcal{J} objective function
- kindex of the iteration step
- k_0 parameter
- L parameter defined in test case
- \mathcal{L} linear operator, population balance operator
- \mathcal{L}_{b} breakage operator
- \mathcal{L}_{c} coalescence operator
- N degree of the polynomials
- Q, \mathcal{R} matrices from OR decomposition
- internal coordinate
- a function in X v
- quadrature weights w
- X function space
- \mathcal{X}_{Ω} mapping between function and standard domain
- mapped function space Y

Greek letters

- coalescence rate parameter α
- δ difference between two successive iteration steps
- perturbation, error ε
- θ relaxation parameter
- Λ diagonal weights matrix
- يد، کيد independent variable, internal coordinate
- independent variable in the standard domain
- Φ basis function
- Ω domain of the system

Abbrevations

- DF density function
- DM direct minimization
- finite difference method FDM
- GLGauss-Legendre
- **GLL** Gauss-Lobatto-Legendre
- LSM least-squares method
- population balance equation **PBE**

Download English Version:

https://daneshyari.com/en/article/1140251

Download Persian Version:

https://daneshyari.com/article/1140251

Daneshyari.com