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Abstract

In this paper, we study an approximation scheme that combines a stabilized nonconforming finite element method and a two-level
method to solve the stationary Navier–Stokes equations. Error estimates of optimal order are obtained. Numerical results to check
these estimates are presented.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that when the finite element methods are used to solve the Navier–Stokes equations, the approx-
imations for velocity and pressure must satisfy the inf–sup condition for them to be stable. Although the low-order
mixed finite elements, such as P1 − P1, P1 − P0, Q1 − Q1, Q1 − P0, do not satisfy this condition, they have the practical
importance in scientific computation for their computational simplicity and convenience. Moreover, compared with
the conforming finite element methods, the nonconforming finite elements [3,4] are more attractive for discretizing
partial differential problems since they posses more favorable stability properties and less support sets. Much work
has been devoted to the nonconforming low-order finite element methods. For example, the nonconforming elements
proposed by Douglas et al. [5] for the velocity and a piecewise constant element for the pressure were used for the
stationary Stokes and Navier–Stokes equations in [2], the same nonconforming elements augmented by the conforming
bubbles for the velocity and the discontinuous piecewise linear functions for the pressure were used for the Stokes
problem in [17], the nonconforming and conforming piecewise linear polynomial approximations for the velocity and
pressure were used for the Stokes equations in [21], and the same finite element approximations were used for the
Navier–Stokes equations in [27].
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In practice, the numerical solution of a nonlinear system of algebraic equations arising in the discretization of the
Navier–Stokes equations can be very time consuming. Two-level methods aim to compute a discrete approximation of
the solution of a nonlinear partial differential equation with less computational work and to preserve the optimal order of
convergence; see [25,26] for steady state semi-linear elliptic equations and [6,9,10,18–20] for the steady Navier–Stokes
equations. As for the nonstationary Navier–Stokes equations, the two-level finite element semi-discretization scheme
has been studied in [6], the full discretization of the two-level finite element method in the space variable and the
one-level backward Euler scheme in the time variable have been discussed in [23], and the full discretization of the
two-level finite element method in both the space and time variables has been studied in [7,8,14]. Recently, some
multi-level strategies have been studied for the nonstationary Navier–Stokes equations in [11–13].

The method we study in this paper is to combine a stabilized nonconforming finite element method and the two-
level discretization for solving the two-dimensional steady state Navier–Stokes problem under the assumption of the
uniqueness condition. This stabilized finite element method is based on a local Gauss integration method [1,22].

The outline of the paper is as follows: In the next section we introduce a mathematical setting for the stationary
Navier–Stokes equations. In Section 3 we recall the conclusions of the stabilized nonconforming finite element method
for the stationary Navier–Stokes equations. The optimal error estimates of the two level stabilized nonconforming finite
element method are obtained in Section 4. Some numerical results are presented in Section 5, which agree with the
theoretical results.

2. A functional setting of the Navier–Stokes equations

Let � be a bounded domain in R2, assumed to have a Lipschitz continuous boundary ∂�. We consider the
Navier–Stokes problem. Find the velocity u = (u1, u2) and the pressure p defined on � such that⎧⎪⎨⎪⎩

−ν�u + (u · ∇)u + ∇p = f in �,

div u = 0 in �,

u = 0 on ∂�,

(2.1)

where f is the body forces per unit mass and ν > 0 is the dynamic viscosity. For a mathematical formulation of this
problem, we introduce the following Hilbert spaces

X = (H1
0 (�))2, Y = (L2(�))2, M = {q ∈ L2(�) :

∫
�

qdx = 0}.

The spaces (L2(�))m, m = 1, 2, 4, are endowed with the L2-scalar product and L2-norm denoted by (· , ·) and ‖ · ‖ 0,
respectively. The spaces H1

0 (�) and X are equipped with their usual scalar product (∇u, ∇v) and norm ‖u ‖ 1.
The continuous bilinear forms a(· , ·) and d(· , ·) are defined by

a(u, v) = ν(∇u, ∇v), ∀u, v ∈ X; d(v, p) = (div v, p), ∀v ∈ X, p ∈ M,

and a generalized bilinear form on (X, M) × (X, M) by

B((u, p), (v, q)) = a(u, v) − d(u, q) − d(v, p), ∀ (u, p), (v, q) ∈ X × M.

A trilinear form on X × X × X is given by

b(u; v, w) = ((u · ∇)v, w) + 1

2
((div u)v, w) = 1

2
((u · ∇)v, w) − 1

2
((u · ∇)w, v), ∀u, v, w ∈ X.

It is well known that b(· ; · , ·) satisfies the following properties [19,15]:

b(u; v, w) = −b(u; w, v), ∀ u, v, w ∈ X, (2.2)

|b(u; v, w)| ≤ N‖u‖1‖v‖1‖w‖1, ∀ u, v, w ∈ X, (2.3)

where N is a positive constant depending only on the domain �.
Then the continuous Galerkin formulation is to find (u, p) ∈ X × M such that

a(u, v) − d(v, p) − d(u, q) + b(u; u, v) = (f, v), ∀ (v, q) ∈ X × M.
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