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Abstract

Two classes of nodal methods, weakly and strongly discontinuous, are introduced and applied to the numerical solution of the
neutron transport equation in two-dimensional Cartesian geometry and discrete ordinates. These methods are then applied for the
approximation of the solution of a reference problem well known in the nuclear engineering literature.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The neutron transport equation in its discrete-ordinates SN approximation in two-dimensional Cartesian geometry
reads:

Lψk ≡ μk
∂ψk

∂x
+ νk

∂ψk

∂y
+ σtψk = σs

M∑
l=1

ωlψl + Sk ≡ Qk, k = 1, . . . ,M, (1.1)

where the unknown is ψk, the angular neutron flux corresponding to the k th ray of the SN approximation, M being
the total number of rays considered which is given in this case by N(N + 2)/2. The domain to be considered is of the
union of rectangles type and boundary conditions must also be imposed.

Classically, with nodal methods, the domain of interest is decomposed in relatively large homogeneous regions or
“nodes”, over which each angular flux ψ is approximated by a generalized interpolant with interpolation parameters
which are cell and/or edge Legendre moments. This unique interpolant is piecewise continuous using in most cases
polynomial shape functions. For a ray in the first quadrant, the possible left and bottom edge parameters are known
from the boundary conditions or from the neighboring left and bottom cells. The unknowns are thus the right and top
edge parameters as well as the cell ones.

In this paper, two classes of polynomial nodal methods are presented. In essence, both classes of methods lead to
discontinuous approximations as they at most conserve some edge moments between adjacent nodes. In the first class
of methods which is called weakly discontinuous one or several moments of the angular flux are conserved between a
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given cell and its upstream neighbors. The second class of methods, called strongly discontinuous, is fully discontinuous
and only has outgoing (at top and right) edge moments as parameters, in addition to possible cell moments.

Before dealing with these methods in detail, some notation and the basic formalism are presented in the next section.
The two classes of methods are then developed in two sections and a third one proposes some numerical results, before
presenting some conclusions in a last section.

2. Notation and basic formalism

Assuming that the domain � of the union of rectangles type has been discretized in Ne nodes or rather cells or
elements, i.e. � ≡ �h = ∪Nee=1�e, each cell �e is mapped onto a reference cell �̂ ≡ [−1,+1] × [−1,+1], as it is
traditional with finite element methods. A particular finite element is then defined by a set of degrees of freedom D

and a space of functions S with card(D) = dim(S). With degrees of freedom which are cell and/or edge moments as
in this paper, we shall speak of nodal finite elements. For practical purposes, these moments will be taken as Legendre
moments.

To describe D and S in a compact way in the nodal case, some notation will be helpful. Let Pi be the normalized
Legendre polynomial of degree i over [−1,+1] which satisfies

Pi(+1) = 1, Pi(−1) = (−1)i, and
∫ +1

−1
Pi(x)Pj(x)dx = Niδij, (2.1)

with Ni = 2/(2i+ 1). Define moreover Pij(x, y) as Pi(x)Pj(y). Assuming that Lψ = Q is the given equation, ψ is
approximated by ψh and over �̂, cell moments of ψh(x, y) ∈ S are defined as follows

ψ
ij
C =

∫ +1

−1

∫ +1

−1

Pij(x, y)ψh(x, y) dxdy

NiNj
. (2.2)

Edge moments are moreover given by

ψiE =
∫ +1

−1

Pi(sE)ψh(xE, yE)dsE
Ni

(2.3)

where E is a generic symbol corresponding to L,R,B, and T for the left, right, bottom, and top edges respectively,
xE or yE is ±1 depending on the particular edge considered, the other coordinate being sE, the coordinate along that
edge.

S is a space of functions, which are polynomials in this paper. To describe them in a systematic way, let us introduce
the spaces of polynomials of degree i in x and j in y, Qij(x, y) ≡ {xayb|0 ≤ a ≤ i, 0 ≤ b ≤ j}, with in particular
Qi ≡ Qii(x, y) and also the spaces of polynomials of degree i in x and y, Pi(x, y) ≡ {xayb|0 ≤ a+ b ≤ i}, where a
and b are integers. For each nodal finite element, we shall call Np = card(D) the total number of parameters and Nu
the number of unknowns which is less than Np in the weakly discontinuous case, as the interpolation parameters on
the left and bottom edges are taken from the neighboring cells or given by the boundary conditions. In the strongly
discontinuous case, there are no left and bottom parameters and we have Np = Nu.

In the following, each particular method will be assigned a symbol consisting of two capital letters, WD in the
weakly discontinuous case and SD in the strongly discontinuous one, indexed by the two numbers Np and Nu in the
first case, and by Np or Nu indifferently in the second case. In the weakly discontinuous case, (Np −Nu)/2 is the
number of edge moments conserved between adjacent cells. In most practical cases, this number is one or two.

In both cases, we have programmed all the methods from two to eight unknowns per cell and applied them to
multiplicative and nonmultiplicative benchmark problems of the nuclear literature. The discretized equations were
obtained using Maple and the algebraic systems were programmed in Fortran for each one of the nodal schemes.

In the weakly discontinuous case, we have given in Hennart et al. [4] a constructive algorithm to deduce the space
of functions S if the set of degrees of freedom D is known. In that paper, we always assumed that we had the same
number of edge moments on each pair of opposite edges. This is clearly not true in the strongly discontinuous case
and we had to adapt the earlier algorithm to that situation for applications in neutron transport problems.
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