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Abstract

2D flow of incompressible viscous fluid with higher Reynolds number is studied. Galerkin least squares technique of stabilization
of the finite element method is investigated and its modification is described. A number of numerical results is presented. Properties
of stabilization are discussed. Most important part is the study of the accuracy of the stabilized solution by means of a posteriori
error estimates.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Many papers have been devoted to the problem of stabilizing the finite element method (FEM) in flow problems.
Beside getting ideas about stabilization from other papers, works of Franca, Hughes, and their collaborators [4–6,8,9]
provided the theoretical basis for the presented research.

In [2] we modified the Galerkin least squares (GLS) method introduced in [9] and using the modified GLS (we call
it semiGLS) we were able to solve flow with markably higher Reynolds number than without stabilization.

In this paper, beside giving some aditional results of semiGLS method, we concentrate mainly on the aspect of
accuracy of the stabilization technique.

2. Model problem

LetΩ be an open bounded domain in R2 filled with an incompressible viscous fluid, and Γ its boundary. We study
flow governed by Navier–Stokes equations:

∂u
∂t

+ (u · ∇)u − ν�u + ∇p = f in Ω× [0, T ] (1)
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∇ · u = 0 in Ω× [0, T ] (2)

u = g on Γg × [0, T ] (3)

−ν(∇u)n + pn = 0 on Γh × [0, T ] (4)

u = u0 in Ω, t = 0 (5)

where t denotes time variable, u = (u1, u2)T denotes the vector of flow velocity, p denotes the pressure divided by the
density, ν denotes the kinematic viscosity of the fluid supposed to be constant, f denotes the density of volume forces
per mass unit, Γg and Γh are two subsets of Γ satisfying Γ̄ = Γ̄g ∪ Γ̄h, μR1 (Γg ∩ Γh) = 0, n denotes an outward
normal vector to the boundary Γ of unit length, g is a given function satisfying

∫
Γ

g · n dΓ = 0 in the case of Γ = Γg,
u0 is a given flow field satisfying ∇ · u0 = 0.

3. Approximation of the model problem by FEM

First we recall the weak form of the Navier–Stokes equations (1)–(5), as mixed method (cf. [7]). We define vector
function spaces Vg and V by

Vg = {v = (v1, v2)T|v ∈ [H1(Ω)]
2
; Tr vi = gi, i = 1, 2}, V = {v = (v1, v2)T|v ∈ [H1

0 (Ω)]
2}

where H1(Ω), H1
0 (Ω) and L2(Ω)/R are usual function spaces.

The weak unsteady Navier–Stokes problem consists of finding the velocity u(t) = (u1(t), u2(t))T ∈Vg and pressure
p(t) ∈L2(Ω)/R satisfying for any t ∈ [0, T ]:∫

Ω

∂u
∂t

· v dΩ+
∫
Ω

(u · ∇)u · v dΩ+ ν

∫
Ω

∇u : ∇v dΩ−
∫
Ω

p∇ · v dΩ =
∫
Ω

f · v dΩ (6)

∫
Ω

ψ∇ · u dΩ = 0 (7)

u − ug ∈V (8)

for all v ∈V and ψ ∈L2(Ω), where ug ∈Vg represents the Dirichlet boundary condition g in (3), and where we denote

∇u : ∇v = ∂u1

∂x1

∂v1

∂x1
+ ∂u1

∂x2

∂v1

∂x2
+ ∂u2

∂x1

∂v2

∂x1
+ ∂u2

∂x2

∂v2

∂x2
.

Let us divide the domain Ω into N elements TK of a triangulation Th of shape regular family, such that
⋃N
K=1T̄K =

Ω̄, μR2 (TK ∩ TL) = 0,K �= L. Let hK denote the diameter of the element TK. We consider Hood–Taylor finite ele-
ments P2P1 and/or Q2Q1, which satisfy Babuška–Brezzi stability condition (cf. [1]). Their application leads to the
approximation uh ∈Vgh and ph ∈Qh where

Vgh = {vh = (vh1 , vh2 )T ∈ [C(Ω̄)]2; vhi |TK ∈R2(T̄K),K = 1, . . . , N, i = 1, 2, vh = g in nodes onΓg},
Qh = {ψh ∈ C(Ω̄);ψh|TK ∈R1(T̄K),K = 1, . . . , N}

where Rm(T̄K) = Pm(T̄K), if TK is a triangle or Qm(T̄K), if TK is a quadrilateral and C(Ω̄) is the space of continuous
functions on Ω̄. We introduce the space

Vh = {vh = (vh1 , vh2 )T ∈ [C(Ω̄)]2; vhi |TK ∈R2(T̄K),K = 1, . . . , N, i = 1, 2, vh = 0 in nodes onΓg}
Since these function spaces satisfy Vgh ⊂ Vg, Vh ⊂ V , and Qh ⊂ L2(Ω)/R, we can introduce semidiscrete unsteady
Navier–Stokes problem:

Find uh(t) ∈Vgh and ph(t) ∈Qh, t ∈ [0, T ] satisfying for any t ∈ [0, T ]:∫
Ω

∂uh
∂t

· vh dΩ+
∫
Ω

(uh · ∇)uh · vh dΩ+ ν

∫
Ω

∇uh : ∇vh dΩ−
∫
Ω

ph∇ · vh dΩ =
∫
Ω

f · vh dΩ, ∀vh ∈Vh
(9)
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