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Abstract

The effect of numerical integration in the DGFEM for nonlinear convection-diffusion problems in 2D is studied. The volume and
line integrals in the space semidiscretization are evaluated by numerical quadratures. The main goal is to estimate the error caused
by the numerical integration and to show what numerical quadratures should be used in order to preserve the accuracy of the method
with exact integration.
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1. Introduction

In this paper we solve a nonlinear nonstationary convection-diffusion problem in 2D by applying the discontinuous
Galerkin finite element method (DGFEM). The DGFEM is based on the combination of ideas and techniques of the
finite volume (FV) and finite element (FE) methods. Like the standard FEM this method is based on a piecewise
polynomial approximation of the sought solution, but the requirement of the conforming properties is omitted here.
Similarly as in the FV method, a numerical flux is used for the approximation of convective terms. (For a survey of
various DGFE techniques see, e.g. [1,2].) In practical computations performed by the DGFEM, integrals are evaluated
with the aid of quadrature formulae. In this paper we investigate the effect of the numerical integration and show how
to choose the integration formulae.

2. Continuous problem

Let Ω ⊂ R2 be a bounded polygonal domain, ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅ and T > 0. We are concerned with
the following problem: find u : QT = Ω × (0, T ) → R such that

∂u

∂t
+

2∑
l=1

∂fl(u)

∂xl

= ε�u + g in QT , u|ΓD×(0,T ) = uD, ε
∂u

∂n

∣∣∣∣
ΓN×(0,T )

= gN, u(.,0) = u0. (1)
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Here the diffusion coefficient ε > 0 is a given constant, fl (l = 1, 2) are prescribed convective fluxes and g, uD, gN
and u0 are given functions.

3. Discrete problem

Let {Th}h ∈ (0,h0) be a system of partitions of Ω into a finite number of closed triangles K with mutually
disjoint interiors. We call Th triangulations of Ω, but do not require the usual conforming properties from the
FEM.

We set hK = diam(K) and h = maxK ∈ Th
hK. By |K| and ρK we denote the area of K and the radius of the largest

circle inscribed into K, respectively. All elements of Th will be numbered in such a way that Th = {Ki}i ∈ I , where
I ⊂ Z+. If two elements Ki, Kj ∈ Th contain a nonempty common open part of their sides, we put Γij = Γji =
∂Ki ∩ ∂Kj . For i ∈ I we set s(i) = {j ∈ I; Kj is a neighbour of Ki}. The boundary ∂Ω is formed by a finite number
of faces of elements Ki adjacent to ∂Ω. We denote all these boundary faces by Sj , where j ∈ Ib ⊂ Z−, and set
γ(i) = {j ∈ Ib; Sj is a face of Ki}, Γij = Sj for Ki ∈ Th such that Sj ⊂ ∂Ki, j ∈ Ib. Now, writing S(i) = s(i) ∪ γ(i), we
have ∂Ki = ⋃

j ∈ S(i)Γij, ∂Ki ∩ ∂Ω = ⋃
j ∈ γ(i)Γij . For i ∈ I, by γD(i) and γN(i) we denote the subsets of γ(i) formed

by such indexes j that the faces Γij form the parts ΓD and ΓN, respectively, of ∂Ω.
Furthermore, we denote by nij the unit outer normal to ∂Ki on the face Γij , |Γij| the length of Γij and we set

sh = {Γij; j ∈ S(i), i ∈ I}.
We suppose that the system {Th}h ∈ (0,h0) is regular, i.e. hK/ρK ≤ CR for all K ∈ Th,h ∈ (0, h0), and that hKi ≤

CD|Γij| for all i ∈ I, j ∈ S(i), h ∈ (0, h0).
Over the triangulations Th we define for k ∈N, k ≥ 1, the broken Sobolev spaces:

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀ K ∈ Th}

with seminorms defined by |v|Hk(Ω,Th) = (
∑

K ∈ Th
|v|2

Hk(K))
1/2

. For v ∈ H1(Ω, Th) we denote the traces, average and
jump of the traces of v on Γij = Γji by

v|Γij = trace of v|Ki on Γij, v|Γji = trace of v|Kj on Γji,

〈v〉Γij
= 1

2 (v|Γij + v|Γji ) and [v]Γij
= v|Γij − v|Γji .

If j ∈ γ(i), then we put v|Γji = v|Γij = trace of v|Ki on Γij .
The approximate solution of our problem is sought in the space of discontinuous piecewise polynomial functions

Sh = Sp,−1(Ω, Th) = {v; v|K ∈ Pp(K) ∀ K ∈ Th}, where Pp(K) (p ≥ 1) denotes the space of all polynomials on K of
degree ≤ p.

In order to introduce the space semidiscretization of problem (1) over the mesh Th by the DGFEM, we define the
following forms for functions u, ϕ ∈ H2(Ω, Th) (the weight σ is defined by σ|Γij = |Γij|−1):

(u, ϕ) =
∫

Ω

uϕ dx, ãh(u, ϕ) =
∑
i ∈ I

∫
Ki

ε∇u · ∇ϕ dx

−
∑
i ∈ I

( ∑
j ∈ s(i)
j < i

∫
Γij

ε〈∇u〉 · nij[ϕ] dS −
∑

j ∈ s(i)
j < i

∫
Γij

ε〈∇ϕ〉 · nij[u] dS

)

−
∑
i ∈ I

⎛
⎝ ∑

j ∈ γD(i)

∫
Γij

ε∇u · nijϕ dS −
∑

j ∈ γD(i)

∫
Γij

ε∇ϕ · niju dS

⎞
⎠ ,

J̃σ
h (u, ϕ) =

∑
i ∈ I

∑
j ∈ s(i)
j < i

∫
Γij

σ[u][ϕ]dS +
∑
i ∈ I

∑
j ∈ γD(i)

∫
Γij

σ u ϕ dS,
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