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Abstract

The purpose of this paper is to give a new characterization of the finite jump discontinuities of multivariate functions, in terms of
the divergence of sequences related to the gradients of discrete least-squares polynomial approximations of the function. We also
consider how this result can be applied to vertical fault detection.
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1. Introduction

The approximation of discontinuous functions has become an active field of research, due to its applications in
computer graphics, medical imaging, geophysical sciences, etc. Particularly, the reconstruction of a faulted surface
from a set of scattered data points is a common problem.

Let f be a real multivariate function that presents finite jump discontinuities on a certain subset F of an open set
Ω ⊂ Rd . The first stage in the process of approximation of f is usually to localize the subset F. Then, the function f
is reconstructed by using a fitting method. There exists a number of methods for both stages (cf., for example ([1],
Chapter IX), [2] and references therein).

In two previous papers (cf. [3,4]; see also [5]), we proposed algorithms for fault detection which were based on
the following result: Let c ∈ Ω. Let (Kn)n ∈N be a sequence of compact sets with non-zero measure, contained in
the closure of Ω, such that {c} = ∩n ∈NKn and limn→+∞meas Kn = 0, where meas Kn denotes the measure of Kn.
Finally, for any n ∈N, let �l

Kn
f be the least-squares approximation of f in the space Pl(Kn) of polynomial functions

of degree ≤ l defined on Kn and let

JKn (f ) = 1

meas Kn

∫
Kn

‖∇(�l
Kn

f )(x)‖2 dx,

where ‖ · ‖ stands for the Euclidean norm in Rd . Then, under some additional hypotheses on f, F and (Kn)n ∈N, if f
presents at c a finite jump discontinuity, the sequence (JKn (f ))n ∈N is divergent, whereas, if f is continuous at c, that
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sequence remains bounded. In practice, the function f is only known at a finite set of points in Ω. Hence, it is not possible
to compute the polynomials �l

Kn
f , which have to be replaced by discrete least-squares polynomial approximations.

The purpose of this paper is just to prove a similar result in terms of these discrete approximations (cf. [6] for the
particular case d = 2).

This paper is organized as follows. In Section 2, we shall introduce some preliminary notations and results. Section 3
will be devoted to the new characterization of finite jump discontinuities of a function. This result will serve in Section
4 to provide an heuristic justification of a method for vertical fault detection.

2. Preliminaries

Let m ∈N∗ = N \ {0}. For any square real matrix Λ of order m, det Λ will denote the determinant of Λ and, for any
u ∈Rm and for j = 1, . . . , m, Λ(j, uT) will denote the matrix obtained from Λ when its jth column is replaced by the
column vector uT (here the super-index T means transposition).

For any u, v ∈Rm, we shall write ‖u‖ and u · v for the Euclidean norm of u and the Euclidean inner product of u
and v, respectively. Likewise, if u = (u1, . . . , um) and v = (v1, . . . , vm), we shall use the notations:

ū = 1

m

m∑
i=1

ui, u � v = (u1v1, . . . , umvm) and σuv = u � v − ū v̄.

Let d ∈N∗. The closure, the boundary and the cardinality of any set O ⊂ Rd will be denoted by Ō, ∂O and cardO,
respectively. Likewise, we shall write P1(Rd) for the space of polynomial functions of degree ≤ 1 defined on Rd .

Given an open set Ω ⊂ Rd , a finite set A ⊂ Ω containing a P1(Rd)-unisolvent subset and a function f : Ω → R,
we shall denote by �Af the discrete least-squares polynomial of degree ≤ 1 that fits the data set {(a, f (a))|a ∈ A}, i.e.
the unique solution of the problem:

�Af ∈ P1(Rd) and �Af = arg min
p ∈ P1(Rd )

∑
a ∈ A

(f (a) − p(a))2. (2.1)

Likewise, we shall write

JA(f ) = 1

meas K

∫
K

‖∇(�Af )(x)‖2 dx, (2.2)

where K is any compact set, with non-empty interior, which contains A. Since ∇(�Af ) is equal on Rd to a constant
vector, say α, JA(f ) is, in fact, the number α · α, independent of K.

3. A new characterization of finite jump discontinuities

3.1. Hypotheses

Let d ∈N∗. Let Ω be an open subset of Rd and let F be a subset of Ω satisfying the following assumption:

there exists an open set ω1 ⊂ Ω with a Lipschitz-continuous boundary such thatF is an

open subset of ∂ω1in the trace topology of ∂ω1. (3.1)

From now on, we shall write ω2 = Ω \ ω̄1. Likewise, let f : Ω → R be a function such that

f is continuous on Ω \ F and Lipschitz-continuous on ω1 and ω2 (3.2)

and

∀x ∈F, f (x) = f1(x) = f2(x), (3.3)

where, for i = 1 and 2, the function fi is the continuous extension of f |ωi to ω̄i. We remark that the existence of fi is
a simple consequence of (3.2). In fact, fi is a Lipschitz-continuous function on ω̄i. For any x ∈F, an arbitrary value
can be assigned to f (x). For convenience, we have assumed in (3.3) that f = f1 on F.



Download English Version:

https://daneshyari.com/en/article/1140504

Download Persian Version:

https://daneshyari.com/article/1140504

Daneshyari.com

https://daneshyari.com/en/article/1140504
https://daneshyari.com/article/1140504
https://daneshyari.com

