

Available online at www.sciencedirect.com

Mathematics and Computers in Simulation 77 (2008) 247-256

www.elsevier.com/locate/matcom

On a new characterization of finite jump discontinuities and its application to vertical fault detection

María Cruz López de Silanes^{a,*}, María Cruz Parra^a, Juan José Torrens^b

^a Departamento de Matemática Aplicada, Universidad de Zaragoza, María de Luna 3, E-50018 Zaragoza, Spain

^b Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain

Available online 31 August 2007

Abstract

The purpose of this paper is to give a new characterization of the finite jump discontinuities of multivariate functions, in terms of the divergence of sequences related to the gradients of discrete least-squares polynomial approximations of the function. We also consider how this result can be applied to vertical fault detection.

© 2007 IMACS. Published by Elsevier B.V. All rights reserved.

2000 MSC: 65D10; 65D15

Keywords: Vertical fault; Explicit surfaces; Discontinuous functions; Finite jump discontinuity

1. Introduction

The approximation of discontinuous functions has become an active field of research, due to its applications in computer graphics, medical imaging, geophysical sciences, etc. Particularly, the reconstruction of a faulted surface from a set of scattered data points is a common problem.

Let *f* be a real multivariate function that presents finite jump discontinuities on a certain subset \mathcal{F} of an open set $\Omega \subset \mathbb{R}^d$. The first stage in the process of approximation of *f* is usually to localize the subset \mathcal{F} . Then, the function *f* is reconstructed by using a fitting method. There exists a number of methods for both stages (cf., for example ([1], Chapter IX), [2] and references therein).

In two previous papers (cf. [3,4]; see also [5]), we proposed algorithms for fault detection which were based on the following result: Let $\mathbf{c} \in \Omega$. Let $(K_n)_{n \in \mathbb{N}}$ be a sequence of compact sets with non-zero measure, contained in the closure of Ω , such that $\{\mathbf{c}\} = \bigcap_{n \in \mathbb{N}} K_n$ and $\lim_{n \to +\infty} \max K_n = 0$, where meas K_n denotes the measure of K_n . Finally, for any $n \in \mathbb{N}$, let $\prod_{k=1}^{l} f$ be the least-squares approximation of f in the space $P_l(K_n)$ of polynomial functions of degree $\leq l$ defined on K_n and let

$$J_{K_n}(f) = \frac{1}{\operatorname{meas} K_n} \int_{K_n} \|\nabla(\Pi_{K_n}^l f)(\mathbf{x})\|^2 \, \mathrm{d}\mathbf{x},$$

where $\|\cdot\|$ stands for the Euclidean norm in \mathbb{R}^d . Then, under some additional hypotheses on f, \mathcal{F} and $(K_n)_{n \in \mathbb{N}}$, if f presents at **c** a finite jump discontinuity, the sequence $(J_{K_n}(f))_{n \in \mathbb{N}}$ is divergent, whereas, if f is continuous at **c**, that

* Corresponding author.

0378-4754/\$32.00 @ 2007 IMACS. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.matcom.2007.08.008

E-mail addresses: mcruz@unizar.es (M.C. López de Silanes), cparra@unizar.es (M.C. Parra), jjtorrens@unavarra.es (J.J. Torrens).

sequence remains bounded. In practice, the function *f* is only known at a finite set of points in Ω . Hence, it is not possible to compute the polynomials $\Pi_{K_n}^l f$, which have to be replaced by discrete least-squares polynomial approximations. The purpose of this paper is just to prove a similar result in terms of these discrete approximations (cf. [6] for the particular case d = 2).

This paper is organized as follows. In Section 2, we shall introduce some preliminary notations and results. Section 3 will be devoted to the new characterization of finite jump discontinuities of a function. This result will serve in Section 4 to provide an heuristic justification of a method for vertical fault detection.

2. Preliminaries

Let $m \in \mathbb{N}^* = \mathbb{N} \setminus \{0\}$. For any square real matrix Λ of order m, det Λ will denote the determinant of Λ and, for any $\mathbf{u} \in \mathbb{R}^m$ and for j = 1, ..., m, $\Lambda(j, \mathbf{u}^T)$ will denote the matrix obtained from Λ when its *j*th column is replaced by the column vector \mathbf{u}^T (here the super-index *T* means transposition).

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$, we shall write $\|\mathbf{u}\|$ and $\mathbf{u} \cdot \mathbf{v}$ for the Euclidean norm of \mathbf{u} and the Euclidean inner product of \mathbf{u} and \mathbf{v} , respectively. Likewise, if $\mathbf{u} = (u_1, \dots, u_m)$ and $\mathbf{v} = (v_1, \dots, v_m)$, we shall use the notations:

$$\mathbf{\bar{u}} = \frac{1}{m} \sum_{i=1}^{m} u_i, \quad \mathbf{u} \odot \mathbf{v} = (u_1 v_1, \dots, u_m v_m) \text{ and } \sigma_{\mathbf{uv}} = \overline{\mathbf{u} \odot \mathbf{v}} - \mathbf{\bar{u}} \ \mathbf{\bar{v}}.$$

Let $d \in \mathbb{N}^*$. The closure, the boundary and the cardinality of any set $\mathcal{O} \subset \mathbb{R}^d$ will be denoted by $\overline{\mathcal{O}}$, $\partial \mathcal{O}$ and card \mathcal{O} , respectively. Likewise, we shall write $P_1(\mathbb{R}^d)$ for the space of polynomial functions of degree ≤ 1 defined on \mathbb{R}^d .

Given an open set $\Omega \subset \mathbb{R}^d$, a finite set $A \subset \Omega$ containing a $P_1(\mathbb{R}^d)$ -unisolvent subset and a function $f : \Omega \to \mathbb{R}$, we shall denote by $\prod_A f$ the discrete least-squares polynomial of degree ≤ 1 that fits the data set $\{(\mathbf{a}, f(\mathbf{a})) | \mathbf{a} \in A\}$, i.e. the unique solution of the problem:

$$\Pi_A f \in P_1(\mathbb{R}^d) \quad \text{and} \quad \Pi_A f = \arg \min_{p \in P_1(\mathbb{R}^d)} \sum_{\mathbf{a} \in A} (f(\mathbf{a}) - p(\mathbf{a}))^2.$$
(2.1)

Likewise, we shall write

$$J_A(f) = \frac{1}{\operatorname{meas} K} \int_K \|\nabla (\Pi_A f)(\mathbf{x})\|^2 \, \mathrm{d}\mathbf{x},$$
(2.2)

where *K* is any compact set, with non-empty interior, which contains *A*. Since $\nabla(\Pi_A f)$ is equal on \mathbb{R}^d to a constant vector, say $\boldsymbol{\alpha}$, $J_A(f)$ is, in fact, the number $\boldsymbol{\alpha} \cdot \boldsymbol{\alpha}$, independent of *K*.

3. A new characterization of finite jump discontinuities

3.1. Hypotheses

Let $d \in \mathbb{N}^*$. Let Ω be an open subset of \mathbb{R}^d and let \mathcal{F} be a subset of Ω satisfying the following assumption:

there exists an open set $\omega_1 \subset \Omega$ with a Lipschitz-continuous boundary such that \mathcal{F} is an

open subset of $\partial \omega_1$ in the trace topology of $\partial \omega_1$.

From now on, we shall write $\omega_2 = \Omega \setminus \overline{\omega}_1$. Likewise, let $f : \Omega \to \mathbb{R}$ be a function such that

f is continuous on $\Omega \setminus \mathcal{F}$ and Lipschitz-continuous on ω_1 and ω_2

and

$$\forall \mathbf{x} \in \mathcal{F}, \ f(\mathbf{x}) = f_1(\mathbf{x}) \neq f_2(\mathbf{x}), \tag{3.3}$$

(3.1)

(3.2)

where, for i = 1 and 2, the function f_i is the continuous extension of $f|_{\omega_i}$ to $\bar{\omega}_i$. We remark that the existence of f_i is a simple consequence of (3.2). In fact, f_i is a Lipschitz-continuous function on $\bar{\omega}_i$. For any $\mathbf{x} \in \mathcal{F}$, an arbitrary value can be assigned to $f(\mathbf{x})$. For convenience, we have assumed in (3.3) that $f = f_1$ on \mathcal{F} .

Download English Version:

https://daneshyari.com/en/article/1140504

Download Persian Version:

https://daneshyari.com/article/1140504

Daneshyari.com