

Mathematics and Computers in Simulation 78 (2008) 107-111

www.elsevier.com/locate/matcom

Bivariate orthogonal polynomials on triangular domains

Abedallah Rababah*

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan
Received 23 November 2005; accepted 29 June 2007
Available online 10 July 2007

Abstract

In the paper [A. Rababah, M. Alqudah, Jacobi-weighted orthogonal polynomials on triangular domains, J. Appl. Math. 3 (2005) 205–217.], Jacobi-weighted orthogonal polynomials $P_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$, $\alpha,\beta,\gamma>-1$ on the triangular domain T for values of $\alpha,\beta,\gamma>-1$ in the plane $\alpha+\beta+\gamma=0$ are constructed. In this paper, the results are generalized to every point in the space $\forall \alpha,\beta,\gamma>-1$. © 2007 IMACS. Published by Elsevier B.V. All rights reserved.

AMS class: 41A10; 41A65; 65D17; 65D18; 68U05; 68U07

Keywords: Bivariate orthogonal polynomials; Bernstein polynomials; Jacobi polynomials; Triangular domains

1. Introduction and definitions

Jacobi-weighted orthogonal polynomials $P_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)$ on the triangular domain T for every point in the half space $\alpha,\beta,\gamma>-1$ are constructed. These polynomials $P_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)\in\mathcal{L}_n$, $r=0,1,\ldots,n$, and for $r\neq s$ they satisfy $\mathcal{P}_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)\perp\mathcal{P}_{n,s}^{(\alpha,\beta,\gamma)}(u,v,w)$. Consequently, for $n\geq 1$, the bivariate polynomials $\{P_{n,r}^{(\alpha,\beta,\gamma)}(u,v,w)\}_{r=0}^n$ form orthogonal system over the triangular domain T. These results are generalizations of the results in Refs. [4,9,10], see also [1,2,11,13]. We end this section by giving some definitions: The univariate Bernstein polynomials $P_i^n(u)$, $P_i^n(u)$,

$$b_i^n(u) = b_i^n(u, 1 - u) = \begin{cases} \frac{n!}{i!(n-i)!} u^i (1 - u)^{n-i}, & i = 0, 1, \dots, n \\ 0, & \text{else} \end{cases}$$
 (1)

The univariate Jacobi polynomials $P_n^{(\alpha,\beta)}(u)$ of degree n are the orthogonal polynomials on [0,1] with respect to the weight function

$$w(u) = (2 - 2u)^{\alpha} (2u)^{\beta}, \quad \alpha, \beta > -1.$$
 (2)

Let $T = \Delta \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3$ be a reference triangle in the plane with vertices $\mathbf{p}_k = (x_k, y_k)$, k = 1, 2, 3. Then every point \mathbf{p} inside the triangle T is uniquely written in the form $\mathbf{p} = u\mathbf{p}_1 + v\mathbf{p}_2 + w\mathbf{p}_3$, where (u, v, w) are the barycentric coordinates

^{*} Corresponding author. Tel.: +962 777750890. *E-mail address:* rababah@just.edu.jo.

with u + v + w = 1, $u, v, w \ge 0$. The bivariate Bernstein polynomials of degree n on T are defined by the formula

$$b_{\alpha}^{n}(u, v, w) = \frac{n!}{i! \, i! \, k!} u^{i} v^{j} w^{k}, \quad |\alpha| = i + j + k = n.$$
(3)

 Π_n denotes the space of all polynomials of total degree n over T.

$$\mathcal{L}_n = \{ p \in \Pi_n : \quad p \perp \Pi_{n-1} \}.$$

The inner product of the polynomials P(u, v, w) and Q(u, v, w) over T with respect to the Jacobi weight function $W^{(\alpha,\beta,\gamma)}(u,v,w) = u^{\alpha}v^{\beta}(1-w)^{\gamma}$, $\alpha,\beta,\gamma > -1$ is given by

$$\langle P, Q \rangle = \frac{1}{\Delta} \int \int_{T} PQ W^{(\alpha, \beta, \gamma)}(u, v, w) \, dA. \tag{4}$$

For more, see [3,6–8,12].

2. Bivariate orthogonal polynomials

Let $\sigma = \alpha + \beta + \gamma$, then the following lemmas will be used in the proof of Theorem 3.

Lemma 1. The following identity holds

$$S = \sum_{j=0}^{n-r} (-1)^j \frac{\binom{n+r+\sigma+1}{j} \binom{n-r}{j}}{\binom{n+r+i+\sigma+1}{j}} = \frac{\binom{i}{n-r}}{\binom{n+r+i+\sigma+1}{n-r}}$$

Proof. Using Eq. (5.21) in Ref. [5], and negating the binomial term in the numerator, we get

$$\frac{\binom{n-r}{j}}{\binom{n+r+i+\sigma+1}{j}} = (-1)^{n-r-j} \frac{\binom{-2r-i-\sigma-2}{n-r-j}}{\binom{n+r+i+\sigma+1}{n-r}}.$$

Substituting these simplifications in the summation, we get

$$S = \frac{(-1)^{n-r}}{\binom{n+r+i+\sigma+1}{n-r}} \sum_{j=0}^{n-r} \binom{n+r+\sigma+1}{j} \binom{-2r-i-\sigma-2}{n-r-j}.$$

Using Eq. (5.22) in Ref. [5], we have

$$S = \frac{(-1)^{n-r} \binom{n-r-i-1}{n-r}}{\binom{n+r+i+\sigma+1}{n-r}},$$

and by negating the numerator, the identity holds. \Box

We define the polynomials $q_{n,r,\sigma}(w)$ of degree n-r by

$$q_{n,r,\sigma}(w) = \sum_{j=0}^{n-r} (-1)^j \binom{n+r+\sigma+1}{j} b_j^{n-r}(w), \quad r = 0, 1, \dots, n.$$
 (5)

Download English Version:

https://daneshyari.com/en/article/1140729

Download Persian Version:

https://daneshyari.com/article/1140729

<u>Daneshyari.com</u>