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Abstract

We describe a quasi-Monte Carlo method for the simulation of discrete time Markov chains with continuous multi-dimensional
state space. The method simulates copies of the chain in parallel. At each step the copies are reordered according to their successive
coordinates. We prove the convergence of the method when the number of copies increases. We illustrate the method with numerical
examples where the simulation accuracy is improved by large factors compared with Monte Carlo simulation.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Many real-life systems can be modeled using Markov chains. Fields of application are queueing theory, telecom-
munications, option pricing, etc. In most interesting situations, analytic formulas are not available and the state space
of the chain is so large that classical numerical methods would require a considerable computational time and huge
memory capacity. So Monte Carlo (MC) simulation becomes the standard way of estimating performance measures
for these systems. A drawback of MC methods is their slow convergence. One approach to improve the accuracy of
the method is to change the random numbers used. Quasi-Monte Carlo (QMC) methods use quasi-random numbers
instead of pseudo-random numbers. Pseudo-random numbers aim to simulate a sequence of independent and identi-
cally distributed (i.i.d.) random variables with a given distribution (we only consider the uniform distribution). In the
example of MC integration, it is not so much the randomness of the samples that is relevant, but rather that the samples
should be spread in a uniform manner over the integration domain. Quasi-random numbers are sample points for which
the empirical distribution is close to the uniform distribution; unlike for random sampling, quasi-random points are
not required to be independent and may be completely deterministic.
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The efficiency of a QMC method depends on the quality of the quasi-random points that are used. Broadly speaking,
these points should form a low-discrepancy point set. We recall from [12] some basic notations and concepts. We first
denoteI:=[0, 1). Let s ≥ 1 be a fixed dimension and denote byλs the s-dimensional Lebesgue measure. For a set U = {u0,
. . ., uN−1} of points in the s-dimensional unit cube Is and for a Borel set B ⊂ Is we define the local discrepancy by

D(B, U):= 1

N

∑
0≤k<N

1B(uk) − λs(B), (1)

where 1B denotes the indicator function of B. The discrepancy of U is defined by D(U) := sup Q | D(Q, U) |, the
supremum being taken over all subintervals Q ⊂ Is. The star discrepancy of U is D�(U):=supQ� |D(Q�, U)|, where
Q� runs through all subintervals of Is of the form

∏s
i=1[0, ai). A low-discrepancy point set in Is is a set of N points

for which the discrepancy is of size O((log N)s−1/N), which is the minimum size possible. The most powerful current
methods of constructing low-discrepancy point sets are based on the theory of (t, m, s)-nets. For an integer b ≥ 2, an
elementary interval in base b is an interval of the form

∏s
i=1[aib

−di , (ai + 1)b−di ), with integers di ≥ 0 and 0 ≤ ai < bdi

for 1 ≤ i ≤ s. If 0 ≤ t ≤ m are integers, a (t, m, s)-net in base b is a point set U consisting of bm points in Is such that D(Q,
U) = 0 for every elementary interval Q in base b with measure bt−m. If b ≥ 2 and t ≥ 0 are integers, a sequence u0, u1,
. . . of points in Is is a (t, s)-sequence in base b if, for all integers j ≥ 0 and m > t, the points u� with jbm ≤ � < (j + 1)bm

form a (t, m, s)-net in base b.
In the example of numerical integration, the QMC method achieves a significantly higher accuracy than the MC

method, with the same computational effort. It may be hoped that the improvement obtained by using quasi-random
points in place of random samples can also be attained in problems of numerical analysis that can be reduced to
numerical integration. QMC simulations can outperform MC simulations in some applications: we refer to the IMACS
Seminars on Monte Carlo Methods [1,2,4,13].

In previous communications, we first proposed QMC schemes to simulate Markov chains with a discrete state space,
either one-dimensional [7,8] or multi-dimensional [3]. We next applied the method to one-dimensional continuous state
spaces [10,11]. In the present work, we extend the QMC algorithm to Markov chains with continuous multi-dimensional
state spaces.

2. The method

Our setting is an homogeneous Markov chain {Xj, j ∈N} whose state space E is a subspace of Rs for some s ∈N∗.
The distribution P0 of X0 is known, and we assume that the chain evolves according to the stochastic recurrence:

Xj+1 = ϕj+1(Xj, Uj+1), j ≥ 0, (2)

where {Uj, j ≥ 1} is a sequence of i.i.d. uniform random variables over Id for some d ∈N∗, and ϕj+1 : E × Id → E

is a measurable map for each j.
To approximate the Markov chain by ordinary MC, we proceed as follows. Given a large integer N, we draw N

samples x0
k, 0 ≤ k < N from the initial distribution P0. Then for each k, we generate a sample path of the chain via

xj+1
k = ϕj+1(xj

k, uj+1
k ), j ≥ 0, (3)

where u1
k, u2

k, . . . are pseudo-random numbers which simulate independent and uniformly distributed random variables
over Id . In order to construct a QMC algorithm for the approximation of the Markov chain, we reduce the simulation
to numerical integration.

We denote by M+ the set of all nonnegative measurable functions on E. If Pj denotes the distribution of Xj, then

∀f ∈M+
∫

E

fdPj+1 =
∫
Id

∫
E

f ◦ ϕj+1(x, u) dPj(x) du. (4)

For x ∈ E, let us write δx for the unit mass at x. We are looking for an approximation of Pj of the form

P̂j:= 1

N

∑
0≤k<N

δxj

k

, (5)
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