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Abstract

We consider a constructive method for the solution of Fredholm integral equations of second kind. This method is based on a
simple generalization of the well-known Sherman–Morrison formula to the infinite dimensional case. In particular, this method
constructs a sequence of functions, that converges to the exact solution of the integral equation under consideration. A formal proof
of this convergence result is provided for the case of Fredholm integral equations with L2 integral kernel. Finally, a boundary value
problem for the Laplace equation is considered as an example of the application of the proposed method.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Integral equations provide a natural mathematical formulation for a variety of applied problems, such as for example
diffraction problems, elasticity problems, and electrostatic problems, see [6] for a detailed description of such appli-
cations. Moreover, they can be used to obtain an equivalent formulation of a large class of initial and boundary value
problems for partial differential equations, see, for example, the potential theory for the Laplace operator [7, chapter 6],
and the Green function theory for ordinary differential equations [12, p. 274]. So, integral equations are fundamental
tools in applied mathematics and their study can be profitable used in several application fields.

We consider the following Fredholm integral equation of second kind,

u(s) − λ

∫ b

a

K(s, t)u(t)dt = f (s), a ≤ s ≤ b (1)

where K : [a, b] × [a, b] → C is an L2 integral kernel, f : [a, b] → C is the L2 right-hand side function, λ ∈C, and
u : [a, b] → C is the L2 solution of the integral equation.

We assume that

K(s, t) = lim
N→∞KN (s, t), s, t ∈ [a, b] (2)
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and, for each N ∈N, KN is a finite rank kernel. The solution of integral Eq. (1) can be performed by a standard tool,
i.e. the Fredholm theory, see [11] for a wide description. Moreover, numerical methods such as collocation, Galerkin,
Petrov Galerkin and Wavelet Petrov Galerkin methods are used for the approximate solution of (1), see [1,7,2,8] for
their analysis.

Note that, from Fredholm theory, the solution of Eq. (1) is based on kernels KN appearing in (2). In fact, when K
is substituted by KN , the solution uN of integral Eq. (1) can be obtained by solving a linear system, and uN converges
to the solution of (1) as N → ∞.

In [4] we present a new recursive method for the solution of integral Eq. (1), for the real case. This method, based on a
generalization of the well known Sherman–Morrison formula, provides an explicit construction of a function sequence,
that converges to the solution of the Fredholm integral equation under consideration. Really, in [4] an evidence of such
a convergence result has been given only by several examples. In this paper we give a generalization of this method to
the complex case and the rigorous proof of the above mentioned convergence result.

The proposed method is similar to the direct approach obtained from the Fredholm theory, in fact the approximate
solution uN is computed by solving the Fredholm integral equation with kernel K replaced by a finite rank kernel KN .
The main difference between this two methods is that in the Fredholm theory uN is computed by solving a finite linear
system, in the proposed method uN is computed recursively from the previous approximation uN−1. Note that this is
an important feature, for example, when we have to compute the solution of (1) with a prescribed precision.

Finally, the recursive method is applied to the solution of a boundary value problem for the Laplace equation. Note
that this is a very classical application of the integral equations, in fact, historically the main goal for the development
of integral equations theory was the applications to the boundary valued problems for the Laplace equation. In this
example we show that the sequence constructed by the proposed method converges to the solution of the boundary
value problem under consideration.

In Section 2 we recall some fundamental results of the Fredholm theory. In Section 3 we present the recursive
method and we prove the convergence result for the sequence constructed by this method. In Section 4 we describe
the application of the proposed method to the solution of a boundary value problem for the Laplace equation, and the
corresponding numerical implementation. In Section 5 we give some final considerations about the proposed method.

2. The Fredholm theory

We recall, for the convenience of the reader, some fundamental results of the Fredholm theory, that are explained
with more details in [11]. We give some notations. Let N be the set of positive integers, R be the set of real numbers,
C be the set of complex numbers. Let x ∈C we denote with |x| the module of x, and with x̄ the conjugate of x. Let
n, m ∈N, Rn, Cn are the real and complex Euclidean spaces, respectively; Cn×m is the set of complex matrices having
n rows and m columns. Let x ∈Cn a complex column vector, we denote with xt the transpose of x, with xh the conjugate
transposed of x, and with ||x|| the Euclidean norm of Cn. Note that the same notation is used for x ∈Rn, but in this
case xh = xt . We denote with A = (aij) ∈Cn×m the matrix whose entries are aij , i = 1, 2, . . . , n, j = 1, 2, . . . , m, and
for n = m, we denote with |A| the determinant of A. We denote with In = (δij) ∈Cn×n the identity matrix, where,
for i, j = 1, 2, . . . , n, δij = 0 if i /= j, and δij = 1 if i = j. Let J ⊂ Rn be a bounded domain of Rn, we denote with
L2(J) the space of measurable functions f : J → C, that are square integrables. Let g, u ∈L2(J), we denote with
〈g, u〉 = ∫

J
g(t)u(t)dt, the usual hermitian inner product in L2(J) and with ||u|| = (〈u, u〉)(1/2) the L2(J) norm of

u. Note that, we abuse of this notation also for Euclidean norms of Rn and Cn. In the following we denote with
J = [a, b] ⊂ R a bounded interval and we suppose λ /= 0 in (1), in fact the case λ = 0 is trivial.

Definition 2.1. An L2 kernel is a function K : J × J → C such that

(1) K ∈L2(J × J);
(2) for each s ∈ J , K(s, ·) ∈L2(J), where K(s, ·) : J → R is the measurable function of one variable, obtained by

fixing the first variable;
(3) for each t ∈ J , K(·, t) ∈L2(J), where K(·, t) : J → R is the measurable function of one variable, obtained by fixing

the second variable.
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