
Mathematics and Computers in Simulation 72 (2006) 195–200

Lattice Boltzmann simulation of natural convection
in porous media

Takeshi Seta∗, Eishun Takegoshi, Kenichi Okui
Department of Mechanical and Intellectual Systems Engineering, Faculty of Engineering, University of Toyama, Japan

Available online 3 July 2006

Abstract

This paper confirms the reliability and the computational efficiency of the lattice Boltzmann method in simulating natural
convection in porous media at the representative elementary volume scale. The influence of porous media is considered by introducing
the porosity to the equilibrium distribution function and by adding a force term to the evolution equation. The temperature field is
simulated by a simplified thermal energy distribution function which neglects the compression work done by the pressure and the
viscous heat dissipation. A comprehensive parametric study of natural convective flows is carried out for various values of Rayleigh
number, of Darcy number, and of porosity. The comparison of solutions between the present model and earlier studies shows good
quantitative agreement for the whole range of Darcy and Rayleigh numbers.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

A lot of early researchers on natural convection in porous media used the Darcy’s equation. For high velocity, many
experimental data do not agree with the theoretical prediction based on Darcy’s law [2]. Two notable modifications
of the Darcy’s equation are proposed: one is Forchheimer’s equation [5] that takes consideration of non-linear drag
effect due to the solid matrix, and the other is Brinkman’s equation [1] that includes the viscous stresses introduced
by the solid boundary. For the case in which the Reynolds number or the Darcy number is large, the non-linear drag
must be considered. The convective heat transfer is mostly a boundary phenomenon; Brinkman’s modification for
the Darcy’s equation is significant for the energy transport process. Although it is not easy to combine these two
equations, the Brinkman–Forchheimer equation which includes the viscous and inertial terms was derived by the local
volume averaging technique [8]. Many researchers calculated the Brinkman–Forchheimer equation using conventional
numerical methods and demonstrated the equation can appropriately predict the heat transfer and fluid dynamics
in the non-Darcy regime [7,9]. The lattice Boltzmann method (LBM) has been successfully applied to study of the
isothermal flows in porous media not only at the pore scale [12] but also at the representative elementary volume (REV)
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scale [6]. We will confirm the reliability of the LBM in simulating natural convection in the porous media with the
Brinkman–Forchheimer equation.

2. The lattice Boltzmann model

The continuity equation, the Brinkman–Forchheimer equation, and the energy equation are written as:

∇ · u = 0, (1)

∂tu + (u · ∇)
(u

ε

)
= − 1

ρ
∇(εp) + νe∇2u + F, (2)

∂t(ρe) + ∇ · (ρue) = χ∇2(ρe), (3)

where ε is the porosity of the medium, νe the effective viscosity, and χ is the thermal diffusivity. The total body force
F encompasses the viscous diffusion, the inertia due to the presence of a porous medium, and an external force. With
the widely used Ergun’s relation [4], the body force can be written as

F = −εν

K
u − 1.75√

150εK
|u|u + εG, (4)

where ν is the kinematic viscosity, K is the permeability, and G is the gravity. The thermal energy distribution LB
model solves the following kinetic equations for the distribution functions fi and gi [10],

fi(x + eiδt, t + δt) − fi(x, t) = −fi(x, t) − f
eq
i (x, t)

τv

+ δtFi, (5)

gi(x + eiδt, t + δt) − gi(x, t) = −gi(x, t) − g
eq
i (x, t)

τc

. (6)

Equation (5) recovers the continuity and the momentum Eqs. (1) and (2). Equation (6) describes the evolution of
the internal energy and leads to Eq. (3). The macroscopic quantities, fluid density and internal energy, are defined as
ρ = ∑

i fi and as e = ∑
i gi/ρ, respectively. The fluid velocity u is calculated using a temporal velocity v to consider

the effects of porous media.

u = v
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√
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0 + c1|v|

, (7)

where v = ∑
i eifi/ρ + δt

2 εG, c0 = 1
2
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)
, and c1 = ε δt

2
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. The equilibrium distribution function f

eq
i

for the D2 Q9 model is given by

f
eq
i = ωiρ

[
1 + 3ei · u

c2 + 9(ei · u)2

2εc4 − 3u2

2εc2

]
, (8)

where ωi is the weight, and c is the lattice spacing. For the D2 Q9 model, the discrete velocities are defined by e0 = 0,
ei = c(cos((i − 1)π/2), sin((i − 1)π/2)) for i = 1–4, and ei = √

2c(cos((i − 5)π/2 + π/4), sin((i − 5)π/2 + π/4)) for
i = 5–8. The weights are given by ω0 = 4

9 , ωi = 1
9 for i = 1–4, and ωi = 1

36 for i = 5–8. Similarly the equilibrium
distribution functions for the thermal energy distribution g

eq
i can be written as

g
eq
0 = −2ρe
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c2 , (9)
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(i = 1, 2, 3, 4), (10)
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]
(i = 5, 6, 7, 8). (11)
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