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Abstract

This paper is concerned with the error behaviour of linear multistep methods applied to singularly perturbed Volterra delay-
integro-differential equations. We derive global error estimates of A(α)-stable linear multistep methods with convergent quadrature
rule. Numerical experiments confirm our theoretical analysis.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Singularly perturbed problems (SPPs) arise in many physical and biological problems (cf. [1–3,6,9–11,13]).
It is well known that the convergence of numerical methods for SPPs cannot be satisfactorily covered by B-
theory because of their very special structures. Some authors (cf. [12,18–21]) have presented some numerical
convergence results of SPPs. A special class of singularly perturbed integro-differential systems has been solved
by Kauthen [14,15] by implicit Runge–Kutta. In Gan et al. [8], convergence of linear multistep methods and
Runge–Kutta methods applied to the singular perturbation problems with delays has been analyzed. Hristova and
Bainov [9–11] investigated some character of singularly perturbed Volterra delay-integro-differential equations
(SPVDIDEs).

As far as we know, no results on the convergence for the systems of SPVDIDEs have been presented in the literature.
In this paper, we analyze the following systems of SPVDIDEs
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x′(t) = f (t, x(t), y(t),
∫ t

t−τ
p(t, s, x(s), y(s)) ds), t ∈ [0, T ],

εy′(t) = g(t, x(t), y(t),
∫ t

t−τ
q(t, s, x(s), y(s)) ds), 0 < ε � 1, t ∈ [0, T ],

x(t) = ϕ(t), y(t) = ψ(t), t ≤ 0,

(1.1)

where τ and ε are constants, and τ > 0. ϕ and ψ are given continuous functions. p : R× R× RD1 × RD2 → RD3 , f :
R× RD1 × RD2 × RD3 → RD1 , q : R× R× RD1 × RD2 → RD4 and g : R× RD1 × RD2 × RD4 → RD2 are given,
sufficiently smooth functions (let us say of class Cm with sufficiently large m). x : R → RD1 and y : R → RD2 are
solutions of the system (1.1). In order to make the error analysis feasible, we always assume that system (1.1) has a
unique solution (x(t), y(t)) which is sufficiently differentiable and satisfies∣∣∣∣dix(t)

dti

∣∣∣∣ ≤ Mi,

∣∣∣∣diy(t)

dti

∣∣∣∣ ≤ Ni,

where Mi and Ni are constants which are independent of the stiffness of the problem. And the system (1.1) satisfies
the conditions

‖f (t, x1, y1, u1) − f (t, x2, y2, u2)‖ ≤ β‖x1 − x2‖ + σ1‖y1 − y2‖ + σ2‖u1 − u2‖, t ≥ 0 (1.2a)

‖p(t, s, x1, y1) − p(t, s, x2, y2)‖ ≤ γ1‖x1 − x2‖ + γ2‖y1 − y2‖, t ≥ 0 (1.2b)

‖g(t, x1, y, v1) − g(t, x2, y, v2)‖ ≤ σ3‖x1 − x2‖ + σ4‖v1 − v2‖, t ≥ 0 (1.2c)

‖q(t, s, x1, y1) − q(t, s, x2, y2)‖ ≤ γ3‖x1 − x2‖ + γ4‖y1 − y2‖, t ≥ 0 (1.2d)

where 〈, 〉 is the standard inner product on RN and ‖ · ‖ the corresponding norm. For reasons of stability we assume
that

the eigenvaluesλofgy(t, x, y, v)lie in|argλ− π| < α, (1.2e)

for (t, x, y, v) in a neighbourhood of the considered solution, except for special instructions, where α is the angle of
A(α)-stability of the following linear multistep methods, argλ is the argument of the eigenvalue λ.

This paper is concerned with the error analysis of linear multistep methods applied to this classes of SPVDIDEs
which satisfy (1.2). This paper is organized as follows. In Section 2, we drive the linear multistep methods with
compound quadrature formulae. In Section 3, the global error estimate of A(α)-stable and strictly stable multistep
method is investigated. In Section 4, we illustrate our main results by numerical experiments.

2. Linear multistep methods for SPVDIDEs

Baker and Ford[4,5] derived a class of numerical methods for Volterra delay-integro-differential equations (VDIDEs)
with discrete delay arguments. Their methods are based on strongly stable underlying linear multistep methods
combined with convergent quadrature rules. Here, we introduce an adaptation of those methods to (1.1):

ρ(E)xn = hσ(E)f (tn, xn, yn, un), (2.1a)

ρ(E)yn = h

ε
σ(E)g(tn, xn, yn, vn), (2.1b)

where ρ(ξ) =∑k
i=0αiξ

i, σ(ξ) =∑k
i=0βiξ

i, (αi, βi ∈R) are polynomials, which are subject to consistency condi-
tions ρ(1) = 0 and ρ′(1) = σ(1), E denotes the shift operator: Eyn = yn+1, h > 0 is the stepsize, tn = nh, n =
0, 1, . . . , I, (I + k)h ≤ T ,xn andyn are approximations to the exact solutionx(tn) andy(tn), respectively. The arguments
un and vn are approximations to integrals

∫ tn
tn−τ p(tn, s, x(s), y(s)) ds and

∫ tn
tn−τ q(tn, s, x(s), y(s)) ds, respectively.

Process (2.1) is defined completely by the linear multistep method and the quadrature rules for un and vn.
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