Lifted, projected and subgraph-induced inequalities for the representatives k-fold coloring polytope

Manoel Campêlo ${ }^{\text {a }}$, Phablo F.S. Moura ${ }^{\mathrm{b}, *}$, Marcio C. Santos ${ }^{\mathrm{c}}$
${ }^{a}$ Dep. Estatística e Matemática Aplicada, Universidade Federal do Ceará, Brazil
${ }^{\text {b }}$ Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
${ }^{\text {c }}$ Heudiasyc, UMR CNRS 7253, Université de Technologie de Compiègne, France

A R T I C L E I N F O

Article history:

Received 1 April 2015
Received in revised form 22 October 2015
Accepted 23 June 2016
Available online 21 July 2016

Keywords:

(k-fold) graph coloring
Stable set polytope
Facet
Web graph
Lexicographic product

Abstract

A k-fold x-coloring of a graph G is an assignment of (at least) k distinct colors from the set $\{1,2, \ldots, x\}$ to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The k th chromatic number of G, denoted by $\chi_{k}(G)$, is the smallest x such that G admits a k-fold x-coloring. We present an integer linear programming formulation (ILP) to determine $\chi_{k}(G)$ and study the facial structure of the corresponding polytope $\mathcal{P}_{k}(G)$. We show facets that $\mathcal{P}_{k+1}(G)$ inherits from $\mathcal{P}_{k}(G)$ and show how to lift facets from $\mathcal{P}_{k}(G)$ to $\mathcal{P}_{k+\ell}(G)$. We project facets of $\mathcal{P}_{1}\left(G \circ K_{k}\right)$ into facets of $\mathcal{P}_{k}(G)$, where $G \circ K_{k}$ is the lexicographic product of G by a clique with k vertices. In both cases, we can obtain facet-defining inequalities from many of those known for the 1 -fold coloring polytope. We also derive facets of $\mathcal{P}_{k}(G)$ from facets of stable set polytopes of subgraphs of G. In addition, we present classes of facet-defining inequalities based on strongly χ_{k}-critical webs and antiwebs, which extend and generalize known results for 1 -fold coloring. We introduce this criticality concept and characterize the webs and antiwebs having such a property.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite, undirected and simple. Furthermore, for every graph $G, V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. A k-fold x-coloring of a graph G is an assignment of (at least) k distinct colors from the set $[x]:=\{1,2, \ldots, x\}$ to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The k th chromatic number of G, denoted $\chi_{k}(G)$, is the smallest value x such that G admits a k-fold x-coloring [1]. Obviously, $\chi_{1}(G)=\chi(G)$ is the conventional chromatic number. Additionally, one may easily verify that $\chi_{k}(G) \leq k \cdot \chi(G)$ for all $k \in \mathbb{N}$. Observe that $\chi_{k}(G)$ is equivalently defined if each vertex is restricted to receive exactly k colors.

[^0]

Fig. 1. Examples of k-fold x-colorings of a cycle C_{5}.

In Fig. 1, we show k-fold x-colorings of an odd cycle C_{5} with 5 vertices. We have a 1 -fold 3 -coloring (Fig. 1(a)) and a 2-fold 5 -coloring (Fig. 1(b)). Actually, they are optimal colorings for $k=1$ and $k=2$, respectively, as $\chi_{1}\left(C_{5}\right)=3$ and $\chi_{2}\left(C_{5}\right)=5$ [2]. In Fig. 1(a), note that we could have removed color 3 from v_{2} since it is assigned more than $k=1$ colors.

The k-fold coloring problem is that of finding a coloring with $\chi_{k}(G)$ colors. There is a vast literature about the (1-fold) coloring problem, comprising several aspects of the problem such as computational complexity, combinatorial properties, polyhedral studies and solution methods. Recall that determining $\chi(G)$ is an $\mathcal{N}^{\mathcal{P}}$ hard problem. In fact, it is $\mathcal{N} \mathcal{P}$-hard to approximate the chromatic number within $n^{1-\varepsilon}$ on n-vertex graphs, for every $\varepsilon>0$ [3]. As a direct consequence, for each fixed $k \in \mathbb{N}$, it is $\mathcal{N P}$-hard to approximate $\chi_{k}(G)$ within $\frac{n^{1-\varepsilon}}{k}$ on n-vertex graphs G, for every $\varepsilon>0$.

In comparison with the 1 -fold case, there are only a few studies regarding the k-fold coloring. From the theoretical point of view, one of the reasons for this situation could be the fact that a k-fold coloring of a graph G can be given by an 1-fold coloring of the graph $G \circ K_{k}$, the lexicographic product of G by a clique with k vertices. More precisely, $\chi_{k}(G)=\chi_{1}\left(G \circ K_{k}\right)$. Recall that $G \circ K_{k}$ is obtained by replacing each vertex of G by the clique K_{k} and making two vertices in $G \circ K_{k}$ adjacent whenever the corresponding vertices in G are adjacent.

Considering the computational point of view, this approach, however, may suffer from many drawbacks, mainly because $G \circ K_{k}$ is k times larger than G and the k vertices associated with each vertex of G play essentially the same role in the coloring $G \circ K_{k}$. In order to make a solution method for finding an 1-fold optimal coloring efficient to the k-fold case, one should have to explore the special structure of $G \circ K_{k}$ to compensate the increase in the number of vertices. Moreover, in an enumerative procedure, the many symmetric solutions arising from the multiple copies of each vertex of G in $G \circ K_{k}$ may cause serious disadvantages.

As an alternative, one could try to the tackle the k-fold coloring problem directly (on G). However, it does not seem reasonable to disregard all results about the conventional coloring. This work contributes in this direction and focus on polyhedral studies. For studies on the k-fold coloring problem from the perspective of structural graph theory, the reader is referred to [1,2,4-7].

First, in Section 2, we propose an ILP formulation for the k th fold coloring problem based on class representatives. Class representatives were introduced in $[8,9]$ to model the vertex coloring problem, and since then have been used to model several other problems that aim to cluster elements of a universe according to some property (see e.g. [10-13]). For $k \geq 2$, the formulation we propose for a graph G is more compact than the (1-fold) representatives formulation for the lexicographic product $G \circ K_{k}$. They coincide when $k=1$. In the remainder of this paper, we study the polytope $\mathcal{P}_{k}(G)$ associated with this formulation, which is defined in Section 3.

We profit from the known facial studies for $\mathcal{P}_{1}(G)$ in two ways. In Section 4, we present a lifting theorem that combines a facet of $\mathcal{P}_{k}(G)$ and a facet of $\mathcal{P}_{\ell}(G)$ into a facet of $\mathcal{P}_{k+\ell}(G)$ as well as we show specific liftings from facets of $\mathcal{P}_{k}(G)$ to facets of $\mathcal{P}_{k+1}(G)$. In Section 5 , we show how to project facets from $\mathcal{P}_{1}\left(G \circ K_{k}\right)$

https://daneshyari.com/en/article/1141405

Download Persian Version:
https://daneshyari.com/article/1141405

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mcampelo@lia.ufc.br (M. Campêlo), phablo@ime.usp.br (P.F.S. Moura), marcio.santos@utc.fr (M.C. Santos).

