
Discrete Optimization 21 (2016) 131–156

Contents lists available at ScienceDirect

Discrete Optimization

www.elsevier.com/locate/disopt

Lifted, projected and subgraph-induced inequalities for the
representatives k-fold coloring polytope
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a b s t r a c t

A k-fold x-coloring of a graph G is an assignment of (at least) k distinct colors
from the set {1, 2, . . . , x} to each vertex such that any two adjacent vertices are
assigned disjoint sets of colors. The kth chromatic number of G, denoted by χk(G),
is the smallest x such that G admits a k-fold x-coloring. We present an integer linear
programming formulation (ILP) to determine χk(G) and study the facial structure
of the corresponding polytope Pk(G). We show facets that Pk+1(G) inherits from
Pk(G) and show how to lift facets from Pk(G) to Pk+ℓ(G). We project facets of
P1(G ◦Kk) into facets of Pk(G), where G ◦Kk is the lexicographic product of G by
a clique with k vertices. In both cases, we can obtain facet-defining inequalities from
many of those known for the 1-fold coloring polytope. We also derive facets of Pk(G)
from facets of stable set polytopes of subgraphs of G. In addition, we present classes
of facet-defining inequalities based on strongly χk-critical webs and antiwebs, which
extend and generalize known results for 1-fold coloring. We introduce this criticality
concept and characterize the webs and antiwebs having such a property.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite, undirected and simple. Furthermore, for every graph G, V (G) and
E(G) denote the vertex set and the edge set of G, respectively. A k-fold x-coloring of a graph G is an
assignment of (at least) k distinct colors from the set [x] := {1, 2, . . . , x} to each vertex such that any two
adjacent vertices are assigned disjoint sets of colors. The kth chromatic number of G, denoted χk(G), is the
smallest value x such that G admits a k-fold x-coloring [1]. Obviously, χ1(G) = χ(G) is the conventional
chromatic number. Additionally, one may easily verify that χk(G) ≤ k · χ(G) for all k ∈ N. Observe that
χk(G) is equivalently defined if each vertex is restricted to receive exactly k colors.
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(a) 1-fold 3-coloring. (b) 2-fold 5-coloring.

Fig. 1. Examples of k-fold x-colorings of a cycle C5.

In Fig. 1, we show k-fold x-colorings of an odd cycle C5 with 5 vertices. We have a 1-fold 3-coloring
(Fig. 1(a)) and a 2-fold 5-coloring (Fig. 1(b)). Actually, they are optimal colorings for k = 1 and k = 2,
respectively, as χ1(C5) = 3 and χ2(C5) = 5 [2]. In Fig. 1(a), note that we could have removed color 3 from
v2 since it is assigned more than k = 1 colors.

The k-fold coloring problem is that of finding a coloring with χk(G) colors. There is a vast literature about
the (1-fold) coloring problem, comprising several aspects of the problem such as computational complexity,
combinatorial properties, polyhedral studies and solution methods. Recall that determining χ(G) is an NP-
hard problem. In fact, it is NP-hard to approximate the chromatic number within n1−ε on n-vertex graphs,
for every ε > 0 [3]. As a direct consequence, for each fixed k ∈ N, it is NP-hard to approximate χk(G) within
n1−ε

k on n-vertex graphs G, for every ε > 0.
In comparison with the 1-fold case, there are only a few studies regarding the k-fold coloring. From the

theoretical point of view, one of the reasons for this situation could be the fact that a k-fold coloring of a
graph G can be given by an 1-fold coloring of the graph G ◦Kk, the lexicographic product of G by a clique
with k vertices. More precisely, χk(G) = χ1(G◦Kk). Recall that G◦Kk is obtained by replacing each vertex
of G by the clique Kk and making two vertices in G ◦Kk adjacent whenever the corresponding vertices in
G are adjacent.

Considering the computational point of view, this approach, however, may suffer from many drawbacks,
mainly because G ◦Kk is k times larger than G and the k vertices associated with each vertex of G play
essentially the same role in the coloring G ◦Kk. In order to make a solution method for finding an 1-fold
optimal coloring efficient to the k-fold case, one should have to explore the special structure of G ◦ Kk
to compensate the increase in the number of vertices. Moreover, in an enumerative procedure, the many
symmetric solutions arising from the multiple copies of each vertex of G in G ◦ Kk may cause serious
disadvantages.

As an alternative, one could try to the tackle the k-fold coloring problem directly (on G). However, it does
not seem reasonable to disregard all results about the conventional coloring. This work contributes in this
direction and focus on polyhedral studies. For studies on the k-fold coloring problem from the perspective
of structural graph theory, the reader is referred to [1,2,4–7].

First, in Section 2, we propose an ILP formulation for the kth fold coloring problem based on class
representatives. Class representatives were introduced in [8,9] to model the vertex coloring problem, and
since then have been used to model several other problems that aim to cluster elements of a universe
according to some property (see e.g. [10–13]). For k ≥ 2, the formulation we propose for a graph G is more
compact than the (1-fold) representatives formulation for the lexicographic product G ◦Kk. They coincide
when k = 1. In the remainder of this paper, we study the polytope Pk(G) associated with this formulation,
which is defined in Section 3.

We profit from the known facial studies for P1(G) in two ways. In Section 4, we present a lifting theorem
that combines a facet of Pk(G) and a facet of Pℓ(G) into a facet of Pk+ℓ(G) as well as we show specific liftings
from facets of Pk(G) to facets of Pk+1(G). In Section 5, we show how to project facets from P1(G ◦ Kk)
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