

Contents lists available at ScienceDirect

Discrete Optimization

www.elsevier.com/locate/disopt

An $\mathcal{O}(n\sqrt{m})$ algorithm for the weighted stable set problem in $\{\text{claw, net}\}\$ -free graphs with $\alpha(G) \geq 4$

Paolo Nobili^a, Antonio Sassano^{b,*}

- ^a Dipartimento di Inqequeria dell'Innovazione, Università del Salento, Lecce, Italy
- ^b Dipartimento di Ingegneria Informatica, Automatica e Gestionale "Antonio Ruberti", Università di Roma "Sapienza", Roma, Italy

ARTICLE INFO

Article history: Received 14 May 2015 Received in revised form 11 January 2016 Accepted 12 January 2016 Available online 8 February 2016

Keywords: Claw-free graphs Net-free graphs Stable set Matching

ABSTRACT

In this paper we show that a connected {claw, net}-free graph G(V, E) with $\alpha(G) \geq 4$ is the union of a strongly bisimplicial clique Q and at most two clique-strips. A clique is strongly bisimplicial if its neighborhood is partitioned into two cliques which are mutually non-adjacent and a clique-strip is a sequence of cliques $\{H_0, \ldots, H_p\}$ with the property that H_i is adjacent only to H_{i-1} and H_{i+1} . By exploiting such a structure we show how to solve the Maximum Weight Stable Set Problem in such a graph in time $\mathcal{O}(|V|\sqrt{|E|})$, improving the previous complexity bound of $\mathcal{O}(|V||E|)$.

1. Introduction

The Maximum Weight Stable Set Problem (MWSSP) in a graph G(V, E) with node-weight function $w: V \to \Re$ asks for a subset S^* of pairwise non-adjacent nodes in V having maximum weight $\sum_{v \in S^*} w(v) = \alpha_w(G)$. For each subset W of V we denote by $\alpha_w(W)$ the maximum weight of a stable set in W. If W is the vector of all 1's we omit the reference to W and write W and W.

For each graph G(V, E) we denote by V(F) the set of end-nodes of the edges in $F \subseteq E$, by E(W) the set of edges with end-nodes in $W \subseteq V$ and by N(W) (neighborhood of W) the set of nodes in $V \setminus W$ adjacent to some node in W. If $W = \{w\}$ we simply write N(w). We denote by N[W] and N[w] (closed neighborhood) the sets $N(W) \cup W$ and $N(w) \cup \{w\}$ and by $\delta(W)$ the set of edges having exactly one end-node in W; if $\delta(W) = \emptyset$ and W is minimal with this property we say that W is (or induces) a connected component of G. We denote by G - F the subgraph of G obtained by removing from G the edges in $F \subseteq E$. A clique is a complete subgraph of G induced by some set of nodes $K \subseteq V$. With a little abuse of notation we also regard the set K as a clique and, for any edge $uv \in E$, both uv and $\{u, v\}$ are said to be a clique. A node w such

^{*} Corresponding author.

E-mail address: sassano@dis.uniroma1.it (A. Sassano).

The family of {claw, net}-free graphs has been widely studied in the literature [3–5] since such graphs constitute an important subclass of claw-free graphs. In particular, in [3] Pulleyblank and Shepherd described both a $\mathcal{O}(|V|^4)$ algorithm for the maximum weight stable set problem in distance claw-free graphs (a class containing {claw, net}-free graphs) and the structure of a polyhedron whose projection gives the stable set polyhedron STAB(G). In [6] Faenza, Oriolo and Stauffer reduced the complexity of MWSSP in {claw, net}-free graphs to $\mathcal{O}(|V||E|)$, which constitutes a bottleneck for the complexity of their algorithm for the MWSSP in claw-free graphs. In this paper we give a new structural characterization of {claw, net}-free graphs with stability number not smaller than four which allows us to define a $\mathcal{O}(|V|\sqrt{|E|})$ time algorithm for the MWSSP in such graphs. This result, together with the $\mathcal{O}(|E|\log|V|)$ time algorithm for the MWSSP in claw-free graphs with stability number at most three described in [7], provides a $\mathcal{O}(\sqrt{|E|}(|V|+\sqrt{|E|}\log|V|))$ time algorithm for the MWSSP in {claw, net}-free graphs which improves the result of [6].

We say that a node $v \in V$ is regular if its neighborhood can be partitioned into two cliques. A maximal clique Q is reducible if $\alpha(N(Q)) \leq 2$. If Q is a maximal clique, two non-adjacent nodes $u, v \in N(Q)$ are said to be Q-distant if $N(u) \cap N(v) \cap Q = \emptyset$ and Q-close otherwise $(N(u) \cap N(v) \cap Q \neq \emptyset)$. A maximal clique Q is normal if it has three independent neighbors that are mutually Q-distant. In [8] Lovász and Plummer proved the following useful properties of a maximal clique in a claw-free graph.

Proposition 1.1. Let G(V,E) be a claw-free graph. If Q is a maximal clique in G then:

- (i) if u and v are Q-close nodes then $Q \subseteq N(u) \cup N(v)$;
- (ii) if u, v, w are mutually non-adjacent nodes in N(Q) and two of them are Q-distant then any two of them are Q-distant and hence Q is normal. \square

Observe that a {claw, net}-free graph does not contain normal cliques.

Theorem 1.1. Let G(V, E) be a $\{claw, net\}$ -free graph and u a regular node in V whose closed neighborhood is covered by two maximal cliques Q and \overline{Q} . Then $Q(\overline{Q})$ is reducible.

Proof. Suppose, by contradiction, that $\alpha(N(Q)) \geq 3$. Let v_1, v_2, v_3 be three mutually non-adjacent nodes in N(Q). If u is not adjacent to v_1, v_2, v_3 , then by (i) of Proposition 1.1 we have that v_1, v_2, v_3 are mutually Q-distant and hence Q is normal, a contradiction. Consequently, without loss of generality, we can assume that u is adjacent to v_1 and so v_1 belongs to \overline{Q} . The nodes v_2 and v_3 do not belong to $Q \cup \overline{Q}$ and hence are not adjacent to u. It follows, again by (i) of Proposition 1.1, that v_2 and v_3 are distant with respect to Q. But then, by (ii) of Proposition 1.1, Q is a normal clique, a contradiction. \square

Let G be a claw-free graph and let S be a stable set of G(V, E). Any node $s \in S$ is said to be *stable*; any node $v \in V \setminus S$ satisfies $|N(v) \cap S| \leq 2$ and is called *superfree* if $|N(v) \cap S| = 0$, *free* if $|N(v) \cap S| = 1$ and *bound* if $|N(v) \cap S| = 2$. For each free node u we denote by S(u) the unique node in S adjacent to u.

Download English Version:

https://daneshyari.com/en/article/1141414

Download Persian Version:

https://daneshyari.com/article/1141414

<u>Daneshyari.com</u>