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a b s t r a c t

In this paper we show that a connected {claw, net}-free graphG(V,E) with α(G) ≥ 4
is the union of a strongly bisimplicial clique Q and at most two clique-strips. A clique
is strongly bisimplicial if its neighborhood is partitioned into two cliques which are
mutually non-adjacent and a clique-strip is a sequence of cliques {H0, . . . , Hp} with
the property that Hi is adjacent only to Hi−1 and Hi+1. By exploiting such a
structure we show how to solve the Maximum Weight Stable Set Problem in such a
graph in time O(|V |


|E|), improving the previous complexity bound of O(|V ||E|).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Maximum Weight Stable Set Problem (MWSSP) in a graph G(V,E) with node-weight function
w : V → ℜ asks for a subset S∗ of pairwise non-adjacent nodes in V having maximum weight


v∈S∗ w(v) =

αw(G). For each subset W of V we denote by αw(W ) the maximum weight of a stable set in W . If w is the
vector of all 1’s we omit the reference to w and write α(G) and α(W ).

For each graph G(V,E) we denote by V (F ) the set of end-nodes of the edges in F ⊆ E, by E(W ) the set
of edges with end-nodes in W ⊆ V and by N(W ) (neighborhood of W ) the set of nodes in V \W adjacent to
some node in W . If W = {w} we simply write N(w). We denote by N [W ] and N [w] (closed neighborhood)
the sets N(W ) ∪W and N(w) ∪ {w} and by δ(W ) the set of edges having exactly one end-node in W ; if
δ(W ) = ∅ and W is minimal with this property we say that W is (or induces) a connected component of
G. We denote by G− F the subgraph of G obtained by removing from G the edges in F ⊆ E. A clique is a
complete subgraph of G induced by some set of nodes K ⊆ V . With a little abuse of notation we also regard
the set K as a clique and, for any edge uv ∈ E, both uv and {u, v} are said to be a clique. A node w such
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that N(w) is a clique is said to be simplicial. By extension, a clique K such that N(K) is a clique is also said
to be simplicial. A claw is a graph with four nodes w, x, y, z with w adjacent to x, y, z and x, y, z mutually
non-adjacent. To highlight its structure, it is denoted as (w : x, y, z). A Pk is a (chordless) path induced by
k nodes and will be denoted as (u1, . . . , uk). A subset T ∈ V is null (universal) to a subset W ⊆ V \T if and
only if N(T )∩W = ∅ (N(T )∩W =W ). Two nodes u, v ∈ V are said to be twins if N(u)\{v} = N(v)\{u}.
We can always remove a twin from V without affecting the value of the optimal solution of MWSSP. In
fact, if uv ∈ E we can remove the twin with minimum weight, while if uv ̸∈ E we can remove u and replace
w(v) by w(u) + w(v). The complexity of finding all the twins is O(|V | + |E|) [1,2] and hence we assume
throughout the paper that our graphs have no twins. A net (x, y, z : x′, y′, z′) is a graph induced by a triangle
T = {x, y, z} and three mutually non-adjacent nodes {x′, y′, z′} with N(x′)∩T = {x}, N(y′)∩T = {y} and
N(z′) ∩ T = {z}. A square is a 4-hole (v1, v2, v3, v4) with v1v3, v2v4 ̸∈ E called diagonals.

The family of {claw, net}-free graphs has been widely studied in the literature [3–5] since such graphs
constitute an important subclass of claw-free graphs. In particular, in [3] Pulleyblank and Shepherd described
both a O(|V |4) algorithm for the maximum weight stable set problem in distance claw-free graphs (a class
containing {claw, net}-free graphs) and the structure of a polyhedron whose projection gives the stable
set polyhedron STAB(G). In [6] Faenza, Oriolo and Stauffer reduced the complexity of MWSSP in {claw,
net}-free graphs to O(|V | |E|), which constitutes a bottleneck for the complexity of their algorithm for the
MWSSP in claw-free graphs. In this paper we give a new structural characterization of {claw, net}-free graphs
with stability number not smaller than four which allows us to define a O(|V |


|E|) time algorithm for the

MWSSP in such graphs. This result, together with the O(|E| log |V |) time algorithm for the MWSSP in
claw-free graphs with stability number at most three described in [7], provides a O(


|E|(|V |+


|E| log |V |))

time algorithm for the MWSSP in {claw, net}-free graphs which improves the result of [6].
We say that a node v ∈ V is regular if its neighborhood can be partitioned into two cliques. A maximal

clique Q is reducible if α(N(Q)) ≤ 2. If Q is a maximal clique, two non-adjacent nodes u, v ∈ N(Q) are said
to be Q-distant if N(u) ∩ N(v) ∩ Q = ∅ and Q-close otherwise (N(u) ∩ N(v) ∩ Q ̸= ∅). A maximal clique
Q is normal if it has three independent neighbors that are mutually Q-distant. In [8] Lovász and Plummer
proved the following useful properties of a maximal clique in a claw-free graph.

Proposition 1.1. Let G(V,E) be a claw-free graph. If Q is a maximal clique in G then:

(i) if u and v are Q-close nodes then Q ⊆ N(u) ∪N(v);
(ii) if u, v, w are mutually non-adjacent nodes in N(Q) and two of them are Q-distant then any two of them

are Q-distant and hence Q is normal. �

Observe that a {claw, net}-free graph does not contain normal cliques.

Theorem 1.1. Let G(V,E) be a {claw, net}-free graph and u a regular node in V whose closed neighborhood
is covered by two maximal cliques Q and Q. Then Q (Q) is reducible.

Proof. Suppose, by contradiction, that α(N(Q)) ≥ 3. Let v1, v2, v3 be three mutually non-adjacent nodes in
N(Q). If u is not adjacent to v1, v2, v3, then by (i) of Proposition 1.1 we have that v1, v2, v3 are mutually
Q-distant and hence Q is normal, a contradiction. Consequently, without loss of generality, we can assume
that u is adjacent to v1 and so v1 belongs to Q. The nodes v2 and v3 do not belong to Q∪Q and hence are
not adjacent to u. It follows, again by (i) of Proposition 1.1, that v2 and v3 are distant with respect to Q.
But then, by (ii) of Proposition 1.1, Q is a normal clique, a contradiction. �

Let G be a claw-free graph and let S be a stable set of G(V,E). Any node s ∈ S is said to be stable;
any node v ∈ V \ S satisfies |N(v) ∩ S| ≤ 2 and is called superfree if |N(v) ∩ S| = 0, free if |N(v) ∩ S| = 1
and bound if |N(v) ∩ S| = 2. For each free node u we denote by S(u) the unique node in S adjacent to u.
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