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1. Introduction

The standard formulation of an (unconstrained) Integer Quadratic Programming Problem (IQP) is the following:
min{x ' Qx+ L x+c|xeZ", I <x<u} (1)

withQ € Q" L € Q",c € Q,1l € (ZU {—oo})", and u € (Z U {oo})". We assume Q to be symmetric without loss of
generality. However, we do not require Q to be positive semidefinite. In other words, we do not assume convexity of the
objective function

fx) =x"Qx+LTx+c.

Problem (1) is thus NP-hard both by the non-convexity of the objective function and by the integrality constraints on the
variables. More precisely, the problem remains NP-hard in the convex case, i.e., when Q > 0, even if all bounds are infinite
or if all variables are binary. In the first case, Problem (1) is equivalent to the closest vector problem [1]; in the second case, it
is equivalent to binary quadratic programming and max-cut [2]. Moreover, if f is non-convex and integrality is relaxed, i.e., if
the variable x; can be chosen in the interval [I;, u;], the resulting problem is called BoxQP and is again NP-hard.

One approach for solving (1) is based on the idea of getting rid of the non convexity of f and then using a convex IQP
solver. Billionnet et al. [3-5] proposed an approach consisting in reformulating the objective function and obtaining an
equivalent one with a convex quadratic objective function. The approach aims at finding a convex reformulation that gives
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the highest value of its continuous relaxation. However, convexification requires a binary expansion of each non-binary
variable, resulting in a large number of additional variables and possibly leading to numerical problems.

Another natural approach to get rid of the non-convexity of f consists in linearization. This approach has been investi-
gated intensively in the literature. Let S; be the set of symmetric matrices of dimension k. Using the linearization function
£:Q" — S, defined by

w=()()

and setting

1
B S
Q= 1 2
—L
3 Q

we can replace Problem (1) by the following equivalent problem:

min  (Q, £(x))
st. xeZ" (2)
xi€[li,u] fori=1,...,n

where (-, -) denotes the inner product.

We can hence work in an extended space introducing a new set of variables X; withi = 0, ..., n. The new linearized
formulation is obtained by substituting each product x;x;, appearing in row i and column j of £(x), by a new variable Xj;. For
consistency, in this new formulation the linear component x; is substituted by the new variable Xj;. Finally, for a reason that
will later become clearer, we also introduce a new variable Xgg. In this way the new space contains the original n variables
and 1+ (;’) new variables. All variables are collected in a symmetric matrix X of dimension n + 1, representing £(x). The
dimension of the extended space is thus

n+DHn+2)
2
The main challenge is now to ensure X = £(x). This is equivalent to requiring

Xoo = 1, rank(X) =1, and X > 0.

d(n) = 1.

Hence, one way to reformulate Problem (1) is as follows:

min  (Q.X)
s.t. Xoo =1
rank(X) = 1
X >0 (3)

Xo€eZ fori=1,...,n
Xio € [, u;] fori=1,...,n.

Working in the X-space allows more freedom and several reformulations and relaxations of Problem (3) can be defined. By
eliminating the rank constraint and the integrality constraints we obtain the SDP-relaxation (SDP) of Problem (3). Buchheim
and Wiegele [6] devise a branch-and-bound algorithm based on this continuous relaxation.

An alternative is to work with an ILP formulation and then use its continuous relaxation for computing bounds. Sherali
and Adams [7] proposed a unifying framework for strengthening the linearization using the so-called RLT inequalities. By
taking into account the bounds on the original variables ; < x; < u;, we can add the following RLT-inequalities:

Xij — liXjo — [iXio = —li;

X,‘j — u,~on — ijig > —Uujl;

—Xjj + liXjo + uXio > liy;

—Xjj + uiXjo + liXio = uil;.
The four inequalities above were originally introduced by McCormick [8]. Anstreicher [9] uses RLT-inequalities for strength-
ening SDP-relaxations for BoxQP problems. He investigates the relation between the SDP-relaxation, the linear relax-
ation with RLT inequalities and the SDP-relaxation with RLT inequalities. He shows that adding RLT inequalities to the
SDP-relaxation improves the resulting bounds. From a practical point of view, a drawback of this approach is that SDP
solvers have problems in handling the additional RLT-inequalities.

Another class of valid inequalities that can be used for strengthening the extended formulation are the so-called psd
inequalities, introduced by Laurent and Poljak [10]:

(wvw',X) >0 VYveQ. (4)
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