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a b s t r a c t

We investigate the computational potential of split inequalities for non-convex quadratic
integer programming, first introduced by Letchford (2010) and further examined by Burer
and Letchford (2012). These inequalities can be separated by solving convex quadratic
integerminimization problems. For small instanceswith box-constraints, we show that the
resulting dual bounds are very tight; they can close a large percentage of the gap left open
by both the RLT- and the SDP-relaxations of the problem. The gap can be further decreased
by separating the so-called non-standard split inequalities, which we examine in the case
of ternary variables.

© 2014 Published by Elsevier B.V.

1. Introduction

The standard formulation of an (unconstrained) Integer Quadratic Programming Problem (IQP) is the following:

min{x⊤Qx + L⊤x + c | x ∈ Zn, l ≤ x ≤ u} (1)

with Q ∈ Qn×n, L ∈ Qn, c ∈ Q, l ∈ (Z ∪ {−∞})n, and u ∈ (Z ∪ {∞})n. We assume Q to be symmetric without loss of
generality. However, we do not require Q to be positive semidefinite. In other words, we do not assume convexity of the
objective function

f (x) := x⊤Qx + L⊤x + c.

Problem (1) is thus NP-hard both by the non-convexity of the objective function and by the integrality constraints on the
variables. More precisely, the problem remains NP-hard in the convex case, i.e., when Q ≽ 0, even if all bounds are infinite
or if all variables are binary. In the first case, Problem (1) is equivalent to the closest vector problem [1]; in the second case, it
is equivalent to binary quadratic programming andmax-cut [2]. Moreover, if f is non-convex and integrality is relaxed, i.e., if
the variable xi can be chosen in the interval [li, ui], the resulting problem is called BoxQP and is again NP-hard.

One approach for solving (1) is based on the idea of getting rid of the non convexity of f and then using a convex IQP
solver. Billionnet et al. [3–5] proposed an approach consisting in reformulating the objective function and obtaining an
equivalent one with a convex quadratic objective function. The approach aims at finding a convex reformulation that gives
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the highest value of its continuous relaxation. However, convexification requires a binary expansion of each non-binary
variable, resulting in a large number of additional variables and possibly leading to numerical problems.

Another natural approach to get rid of the non-convexity of f consists in linearization. This approach has been investi-
gated intensively in the literature. Let Sk be the set of symmetric matrices of dimension k. Using the linearization function
ℓ:Qn

→ Sn+1 defined by

ℓ(x) =


1
x


1
x

⊤

and setting

Q̃ =

 c
1
2
L⊤

1
2
L Q


we can replace Problem (1) by the following equivalent problem:

min ⟨Q̃ , ℓ(x)⟩
s.t. x ∈ Zn

xi ∈ [li, ui] for i = 1, . . . , n
(2)

where ⟨·, ·⟩ denotes the inner product.
We can hence work in an extended space introducing a new set of variables Xij with i = 0, . . . , n. The new linearized

formulation is obtained by substituting each product xixj, appearing in row i and column j of ℓ(x), by a new variable Xij. For
consistency, in this new formulation the linear component xi is substituted by the new variable X0i. Finally, for a reason that
will later become clearer, we also introduce a new variable X00. In this way the new space contains the original n variables
and 1 +

 n
2


new variables. All variables are collected in a symmetric matrix X of dimension n + 1, representing ℓ(x). The

dimension of the extended space is thus

d(n) =
(n + 1)(n + 2)

2
− 1.

The main challenge is now to ensure X = ℓ(x). This is equivalent to requiring

X00 = 1, rank(X) = 1, and X ≽ 0.

Hence, one way to reformulate Problem (1) is as follows:

min ⟨Q̃ , X⟩

s.t. X00 = 1
rank(X) = 1
X ≽ 0
Xi0 ∈ Z for i = 1, . . . , n
Xi0 ∈ [li, ui] for i = 1, . . . , n.

(3)

Working in the X-space allows more freedom and several reformulations and relaxations of Problem (3) can be defined. By
eliminating the rank constraint and the integrality constraints we obtain the SDP-relaxation (SDP) of Problem (3). Buchheim
and Wiegele [6] devise a branch-and-bound algorithm based on this continuous relaxation.

An alternative is to work with an ILP formulation and then use its continuous relaxation for computing bounds. Sherali
and Adams [7] proposed a unifying framework for strengthening the linearization using the so-called RLT inequalities. By
taking into account the bounds on the original variables li ≤ xi ≤ ui, we can add the following RLT-inequalities:

Xij − liXj0 − ljXi0 ≥ −lilj
Xij − uiXj0 − ujXi0 ≥ −uiuj

−Xij + liXj0 + ujXi0 ≥ liuj

−Xij + uiXj0 + ljXi0 ≥ uilj.

The four inequalities abovewere originally introduced byMcCormick [8]. Anstreicher [9] uses RLT-inequalities for strength-
ening SDP-relaxations for BoxQP problems. He investigates the relation between the SDP-relaxation, the linear relax-
ation with RLT inequalities and the SDP-relaxation with RLT inequalities. He shows that adding RLT inequalities to the
SDP-relaxation improves the resulting bounds. From a practical point of view, a drawback of this approach is that SDP
solvers have problems in handling the additional RLT-inequalities.

Another class of valid inequalities that can be used for strengthening the extended formulation are the so-called psd
inequalities, introduced by Laurent and Poljak [10]:

⟨vv⊤, X⟩ ≥ 0 ∀v ∈ Qn+1. (4)
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