Packing resonant hexagons in fullerenes

Jessica Ann Carr ${ }^{\text {a }}$, Xiaofeng Wang ${ }^{\text {b }}$, Dong Ye ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
${ }^{\mathrm{b}}$ Department of Mathematics, Indiana University Northwest, Gary, IN 46408, United States
${ }^{\text {c }}$ Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, United States

A R TICLE INFO

Article history:

Received 7 April 2014
Received in revised form 20 May 2014
Accepted 21 May 2014
Available online 9 June 2014

Keywords:

Clar number
Fullerene
Resonant set

Abstract

A fullerene graph G is a plane cubic graph such that every face is bounded by either a hexagon or a pentagon. A set \mathscr{H} of disjoint hexagons of G is a resonant set (or sextet pattern) if $G-V(\mathscr{H})$ has a perfect matching. A resonant set is a forcing set if $G-V(\mathscr{H})$ has a unique perfect matching. The size of a maximum resonant set is called the Clar number of G. In this paper, we show the Clar number of fullerene graphs with a non-trivial cyclic 5-edge-cut is ($n-20$)/10. Combining a previous result obtained in Kardoš et al. (2009), it is proved in this paper that a fullerene has the Clar number at least $(n-380) / 61$. For leapfrog fullerenes, we show that the Clar number is at least $n / 6-\sqrt{n / 5}$. Further, it is shown that the minimum forcing resonant set has at least two hexagons and the bound is tight.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A fullerene is a hollow carbon cage consisting only of carbon atoms that are arranged on pentagonal rings or hexagonal rings. Fullerenes are typical nano-materials, including closed-end single-walled carbon nanotubes. The molecule graph of a fullerene is called a fullerene graph, which is a cubic plane graph with only pentagonal faces and hexagonal faces. The vertex set and edge set of G are denoted by $E(G)$ and $V(G)$, respectively. A matching is a set of disjoint edges, i.e., any two edges in this set do not share a common end-vertex. A matching M is perfect (or a Kekulé structure) if every vertex of G is incident with exactly one edge in M. A cycle C is M-alternating if the edges of C alternate between M and $E(G) \backslash M$. A resonant set (or sextet pattern) of G is a set of disjoint M-alternating hexagons for some perfect matching M, i.e., $G-V(\mathcal{H})$ has a perfect matching where $V(\mathscr{H})$ is the set of vertices contained by hexagons in \mathscr{H}. The Clar number of a fullerene graph is the size of a maximum resonant set [1]. It is evident that resonant sets are important to energetic stability of fullerene molecules [2], and experimentally observed fullerenes have the largest Clar number over all fullerene isomers [3]. The Clar number of fullerene graphs can be used to estimate the number of perfect matchings. The number of perfect matchings of fullerene graphs has been well-studied (see [4-8]).

The Clar number of a fullerene graph can be formulated to a binary integer linear programming

$$
\max \left\{\mathbf{1}^{\top} \mathbf{y} \mid \mathbf{Q} \mathbf{x}+\mathbf{R y}=\mathbf{1}\right\}
$$

where \mathbf{Q} is the incident matrix, \mathbf{R} is the vertex-hexagon incident matrix, and \mathbf{x} and \mathbf{y} are binary vectors. For benzenoid hydrocarbons, the Clar number problem can be relaxed to a linear programming problem and hence can be solved in polynomial time [9,10]. However, this relaxation does not work for the Clar number problem of fullerene graphs, so that the computation complexity of the Clar number problem of fullerene graphs remains open.

[^0]

Fig. 1. Fullerene graphs with a forcing resonant set of size two (bold edges form a perfect matching in the remaining graphs by deleting resonant sets).

A sharp upper bound has been obtained in [11] as the following theorem. The fullerene graphs whose Clar numbers attain this bound have been characterized in $[12,13]$.

Theorem 1.1 ([11]). Let G be a fullerene graph with n vertices. Then $\operatorname{cl}(G) \leq\lfloor n / 6\rfloor-2$.
A fullerene graph with n vertices exists for all even integers $n \geq 20$ except $n=22$. A cyclic k-edge-cut S of a graph G is an edge cut such that $G-S$ has two components, each of which contains a cycle. A cyclic k-edge-cut S is trivial if one component of $G-S$ is a k-cycle. The cyclic edge-connectivity of a graph G is the size of the smallest cyclic edge-cut. The cyclic edge-connectivity of a fullerene graph is five $[14,15]$. The fullerene graphs with a non-trivial cyclic 5-edge-cut have been characterized in [8]. Kardoš et al. [7] show that a fullerene graph has exponentially many perfect matchings by proving that a fullerene graph without a non-trivial cyclic 5-edge-cut has a resonant set with at least $(n-380) / 61$ hexagons. In this paper, we show that if a fullerene graph G with n vertices has a non-trivial cyclic 5-edge-cut, then cl $(G)=(n-20) / 10$. Combining the result from [7], the following lower bound on the Clar number of fullerene graphs follows.

Theorem 1.2. Let G be a fullerene graph with n vertices. Then $\operatorname{cl}(G) \geq(n-380) / 61$.
The class of leapfrog fullerenes is an important family of fullerenes due to their chemistry properties (a detailed definition of leapfrog fullerenes will be given in Section 2). In [5], Došlić show that a leapfrog fullerene with n vertices has a resonant set of size at least $n / 8$. Hence the Clar number of a leapfrog fullerene is at least $n / 8$, which can also be deduced from the structure properties obtained by Marušič in [16]. For leapfrog fullerenes with icosahedral symmetry, Graver [17] obtained a better lower bound.

Theorem 1.3 ([17]). Let G be an icosahedral leapfrog fullerene with n vertices. Then $\mathrm{cl}(G) \geq n / 6-2(p+r)$ where $(p+r, p)$ is the Coxeter coordinates of G.

The Coxeter coordinates (x, y) are defined for a pair pentagons that can be joined by two straight hexagon-chains consisting of x hexagons and y hexagons, respectively. An icosahedral leapfrog fullerene has Coxeter coordinates ($p+r, p$) for each pair of pentagons (see [18]). An icosahedral fullerene with Coxeter coordinates ($r, 0$), it can be easily computed that $2(p+r) \leq \sqrt{n / 5}$ and equality holds if and only if $p=0$ (see [17]), where n is the number of vertices. For more details of Coxeter coordinates of fullerenes, refer to [18,17]. In this paper, we obtain a general lower bound for all leapfrog fullerene graphs as follows, which improves the bound obtained in [5].

Theorem 1.4. Let G be a leapfrog fullerene with n vertices. Then $\operatorname{cl}(G) \geq n / 6-\sqrt{n / 5}$.
A resonant set \mathscr{H} of a fullerene graph G is a forcing resonant set if $G-V(\mathscr{H})$ has a unique perfect matching. A hexagonal system is a 2-connected plane graph such that every inner face is a hexagon. It has been shown that every maximum resonant set of a hexagonal system is a forcing set [19]. However, it is not true for fullerene graphs. For example, a maximum resonant set of a fullerene graph with a non-trivial cyclic 5-edge-cut is not a forcing set (see Remark in Section 3). Some fullerene graphs, such as C_{24}, even do not have a forcing resonant set. The forcing hexagon-number of a fullerene graph G is the minimum size of its forcing resonant sets, denoted by $f_{\mathrm{Hex}}(G)$. If a fullerene graph does not have a resonant set, then its forcing hexagon number is infinity. Che and Chen [20] characterized hexagonal systems with a forcing hexagon, i.e., the forcing hexagon-number is 1 . For fullerene graphs, we have the following result.

Theorem 1.5. Let G be a fullerene graph. Then $f_{\mathrm{Hex}}(G) \geq 2$.
The bound in Theorem 1.5 is tight. The two fullerene graphs in Fig. 1 have forcing hexagon-number 2.

https://daneshyari.com/en/article/1141431

Download Persian Version:
https://daneshyari.com/article/1141431

Daneshyari.com

[^0]: * Corresponding author. Tel.: +1 615898 2026; fax: +1 6158985422

 E-mail addresses: jacarr@mit.edu (J.A. Carr), wang287@iun.edu (X. Wang), dong.ye@mtsu.edu, dye@math.wvu.edu (D. Ye).

