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a b s t r a c t

A fullerene graph G is a plane cubic graph such that every face is bounded by either a
hexagon or a pentagon. A setH of disjoint hexagons ofG is a resonant set (or sextet pattern)
if G−V (H) has a perfect matching. A resonant set is a forcing set if G−V (H) has a unique
perfect matching. The size of amaximum resonant set is called the Clar number of G. In this
paper, we show the Clar number of fullerene graphs with a non-trivial cyclic 5-edge-cut is
(n−20)/10. Combining a previous result obtained in Kardoš et al. (2009), it is proved in this
paper that a fullerene has the Clar number at least (n−380)/61. For leapfrog fullerenes, we
show that the Clar number is at least n/6 −

√
n/5. Further, it is shown that the minimum

forcing resonant set has at least two hexagons and the bound is tight.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A fullerene is a hollow carbon cage consisting only of carbon atoms that are arranged on pentagonal rings or hexagonal
rings. Fullerenes are typical nano-materials, including closed-end single-walled carbon nanotubes. The molecule graph of a
fullerene is called a fullerene graph, which is a cubic plane graphwith only pentagonal faces and hexagonal faces. The vertex
set and edge set of G are denoted by E(G) and V (G), respectively. A matching is a set of disjoint edges, i.e., any two edges in
this set do not share a common end-vertex. A matching M is perfect (or a Kekulé structure) if every vertex of G is incident
with exactly one edge in M . A cycle C is M-alternating if the edges of C alternate between M and E(G) \ M . A resonant set
(or sextet pattern) of G is a set of disjointM-alternating hexagons for some perfect matchingM , i.e., G− V (H) has a perfect
matching where V (H) is the set of vertices contained by hexagons in H . The Clar number of a fullerene graph is the size of a
maximum resonant set [1]. It is evident that resonant sets are important to energetic stability of fullerenemolecules [2], and
experimentally observed fullerenes have the largest Clar number over all fullerene isomers [3]. The Clar number of fullerene
graphs can be used to estimate the number of perfect matchings. The number of perfect matchings of fullerene graphs has
been well-studied (see [4–8]).

The Clar number of a fullerene graph can be formulated to a binary integer linear programming

max{1ᵀ y|Qx + Ry = 1}

where Q is the incident matrix, R is the vertex-hexagon incident matrix, and x and y are binary vectors. For benzenoid
hydrocarbons, the Clar number problem can be relaxed to a linear programming problem and hence can be solved in
polynomial time [9,10]. However, this relaxation does not work for the Clar number problem of fullerene graphs, so that the
computation complexity of the Clar number problem of fullerene graphs remains open.
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Fig. 1. Fullerene graphs with a forcing resonant set of size two (bold edges form a perfect matching in the remaining graphs by deleting resonant sets).

A sharp upper bound has been obtained in [11] as the following theorem. The fullerene graphswhose Clar numbers attain
this bound have been characterized in [12,13].

Theorem 1.1 ([11]). Let G be a fullerene graph with n vertices. Then cl(G) ≤ ⌊n/6⌋ − 2.

A fullerene graph with n vertices exists for all even integers n ≥ 20 except n = 22. A cyclic k-edge-cut S of a graph G
is an edge cut such that G − S has two components, each of which contains a cycle. A cyclic k-edge-cut S is trivial if one
component of G− S is a k-cycle. The cyclic edge-connectivity of a graph G is the size of the smallest cyclic edge-cut. The cyclic
edge-connectivity of a fullerene graph is five [14,15]. The fullerene graphs with a non-trivial cyclic 5-edge-cut have been
characterized in [8]. Kardoš et al. [7] show that a fullerene graph has exponentially many perfect matchings by proving that
a fullerene graph without a non-trivial cyclic 5-edge-cut has a resonant set with at least (n − 380)/61 hexagons. In this
paper, we show that if a fullerene graph G with n vertices has a non-trivial cyclic 5-edge-cut, then cl(G) = (n − 20)/10.
Combining the result from [7], the following lower bound on the Clar number of fullerene graphs follows.

Theorem 1.2. Let G be a fullerene graph with n vertices. Then cl(G) ≥ (n − 380)/61.

The class of leapfrog fullerenes is an important family of fullerenes due to their chemistry properties (a detailed definition
of leapfrog fullerenes will be given in Section 2). In [5], Došlić show that a leapfrog fullerene with n vertices has a resonant
set of size at least n/8. Hence the Clar number of a leapfrog fullerene is at least n/8, which can also be deduced from the
structure properties obtained by Marušič in [16]. For leapfrog fullerenes with icosahedral symmetry, Graver [17] obtained
a better lower bound.

Theorem 1.3 ([17]). Let G be an icosahedral leapfrog fullerene with n vertices. Then cl(G) ≥ n/6 − 2(p + r) where (p + r, p)
is the Coxeter coordinates of G.

The Coxeter coordinates (x, y) are defined for a pair pentagons that can be joined by two straight hexagon-chains
consisting of x hexagons and y hexagons, respectively. An icosahedral leapfrog fullerene has Coxeter coordinates (p + r, p)
for each pair of pentagons (see [18]). An icosahedral fullerenewith Coxeter coordinates (r, 0), it can be easily computed that
2(p + r) ≤

√
n/5 and equality holds if and only if p = 0 (see [17]), where n is the number of vertices. For more details of

Coxeter coordinates of fullerenes, refer to [18,17]. In this paper, we obtain a general lower bound for all leapfrog fullerene
graphs as follows, which improves the bound obtained in [5].

Theorem 1.4. Let G be a leapfrog fullerene with n vertices. Then cl(G) ≥ n/6 −
√
n/5.

A resonant set H of a fullerene graph G is a forcing resonant set if G − V (H) has a unique perfect matching. A hexagonal
system is a 2-connected plane graph such that every inner face is a hexagon. It has been shown that everymaximumresonant
set of a hexagonal system is a forcing set [19]. However, it is not true for fullerene graphs. For example, amaximum resonant
set of a fullerene graph with a non-trivial cyclic 5-edge-cut is not a forcing set (see Remark in Section 3). Some fullerene
graphs, such as C24, even do not have a forcing resonant set. The forcing hexagon-number of a fullerene graph G is the
minimum size of its forcing resonant sets, denoted by fHex(G). If a fullerene graph does not have a resonant set, then its
forcing hexagon number is infinity. Che and Chen [20] characterized hexagonal systems with a forcing hexagon, i.e., the
forcing hexagon-number is 1. For fullerene graphs, we have the following result.

Theorem 1.5. Let G be a fullerene graph. Then fHex(G) ≥ 2.

The bound in Theorem 1.5 is tight. The two fullerene graphs in Fig. 1 have forcing hexagon-number 2.
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